ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpopr GIF version

Theorem ltpopr 7657
Description: Positive real 'less than' is a partial ordering. Remark ("< is transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p. (varies). Lemma for ltsopr 7658. (Contributed by Jim Kingdon, 15-Dec-2019.)
Assertion
Ref Expression
ltpopr <P Po P

Proof of Theorem ltpopr
Dummy variables 𝑟 𝑞 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7537 . . . . . . . 8 (𝑠P → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
2 prdisj 7554 . . . . . . . 8 ((⟨(1st𝑠), (2nd𝑠)⟩ ∈ P𝑞Q) → ¬ (𝑞 ∈ (1st𝑠) ∧ 𝑞 ∈ (2nd𝑠)))
31, 2sylan 283 . . . . . . 7 ((𝑠P𝑞Q) → ¬ (𝑞 ∈ (1st𝑠) ∧ 𝑞 ∈ (2nd𝑠)))
4 ancom 266 . . . . . . 7 ((𝑞 ∈ (1st𝑠) ∧ 𝑞 ∈ (2nd𝑠)) ↔ (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑠)))
53, 4sylnib 677 . . . . . 6 ((𝑠P𝑞Q) → ¬ (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑠)))
65nrexdv 2587 . . . . 5 (𝑠P → ¬ ∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑠)))
7 ltdfpr 7568 . . . . . 6 ((𝑠P𝑠P) → (𝑠<P 𝑠 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑠))))
87anidms 397 . . . . 5 (𝑠P → (𝑠<P 𝑠 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑠))))
96, 8mtbird 674 . . . 4 (𝑠P → ¬ 𝑠<P 𝑠)
109adantl 277 . . 3 ((⊤ ∧ 𝑠P) → ¬ 𝑠<P 𝑠)
11 ltdfpr 7568 . . . . . . . . . . 11 ((𝑠P𝑡P) → (𝑠<P 𝑡 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡))))
12113adant3 1019 . . . . . . . . . 10 ((𝑠P𝑡P𝑢P) → (𝑠<P 𝑡 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡))))
13 ltdfpr 7568 . . . . . . . . . . 11 ((𝑡P𝑢P) → (𝑡<P 𝑢 ↔ ∃𝑟Q (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))))
14133adant1 1017 . . . . . . . . . 10 ((𝑠P𝑡P𝑢P) → (𝑡<P 𝑢 ↔ ∃𝑟Q (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))))
1512, 14anbi12d 473 . . . . . . . . 9 ((𝑠P𝑡P𝑢P) → ((𝑠<P 𝑡𝑡<P 𝑢) ↔ (∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ ∃𝑟Q (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))))
16 reeanv 2664 . . . . . . . . 9 (∃𝑞Q𝑟Q ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))) ↔ (∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ ∃𝑟Q (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))))
1715, 16bitr4di 198 . . . . . . . 8 ((𝑠P𝑡P𝑢P) → ((𝑠<P 𝑡𝑡<P 𝑢) ↔ ∃𝑞Q𝑟Q ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))))
1817biimpa 296 . . . . . . 7 (((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) → ∃𝑞Q𝑟Q ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))))
19 simprll 537 . . . . . . . . . . 11 ((((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) ∧ ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))) → 𝑞 ∈ (2nd𝑠))
20 prop 7537 . . . . . . . . . . . . . . . . . 18 (𝑡P → ⟨(1st𝑡), (2nd𝑡)⟩ ∈ P)
21 prltlu 7549 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝑡), (2nd𝑡)⟩ ∈ P𝑞 ∈ (1st𝑡) ∧ 𝑟 ∈ (2nd𝑡)) → 𝑞 <Q 𝑟)
2220, 21syl3an1 1282 . . . . . . . . . . . . . . . . 17 ((𝑡P𝑞 ∈ (1st𝑡) ∧ 𝑟 ∈ (2nd𝑡)) → 𝑞 <Q 𝑟)
23223adant3r 1237 . . . . . . . . . . . . . . . 16 ((𝑡P𝑞 ∈ (1st𝑡) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))) → 𝑞 <Q 𝑟)
24233adant2l 1234 . . . . . . . . . . . . . . 15 ((𝑡P ∧ (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))) → 𝑞 <Q 𝑟)
25243expb 1206 . . . . . . . . . . . . . 14 ((𝑡P ∧ ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))) → 𝑞 <Q 𝑟)
26253ad2antl2 1162 . . . . . . . . . . . . 13 (((𝑠P𝑡P𝑢P) ∧ ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))) → 𝑞 <Q 𝑟)
2726adantlr 477 . . . . . . . . . . . 12 ((((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) ∧ ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))) → 𝑞 <Q 𝑟)
28 prop 7537 . . . . . . . . . . . . . . . . 17 (𝑢P → ⟨(1st𝑢), (2nd𝑢)⟩ ∈ P)
29 prcdnql 7546 . . . . . . . . . . . . . . . . 17 ((⟨(1st𝑢), (2nd𝑢)⟩ ∈ P𝑟 ∈ (1st𝑢)) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑢)))
3028, 29sylan 283 . . . . . . . . . . . . . . . 16 ((𝑢P𝑟 ∈ (1st𝑢)) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑢)))
3130adantrl 478 . . . . . . . . . . . . . . 15 ((𝑢P ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑢)))
3231adantrl 478 . . . . . . . . . . . . . 14 ((𝑢P ∧ ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑢)))
33323ad2antl3 1163 . . . . . . . . . . . . 13 (((𝑠P𝑡P𝑢P) ∧ ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑢)))
3433adantlr 477 . . . . . . . . . . . 12 ((((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) ∧ ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑢)))
3527, 34mpd 13 . . . . . . . . . . 11 ((((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) ∧ ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))) → 𝑞 ∈ (1st𝑢))
3619, 35jca 306 . . . . . . . . . 10 ((((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) ∧ ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢)))) → (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑢)))
3736ex 115 . . . . . . . . 9 (((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) → (((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))) → (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑢))))
3837rexlimdvw 2615 . . . . . . . 8 (((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) → (∃𝑟Q ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))) → (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑢))))
3938reximdv 2595 . . . . . . 7 (((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) → (∃𝑞Q𝑟Q ((𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑡)) ∧ (𝑟 ∈ (2nd𝑡) ∧ 𝑟 ∈ (1st𝑢))) → ∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑢))))
4018, 39mpd 13 . . . . . 6 (((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) → ∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑢)))
41 ltdfpr 7568 . . . . . . . . 9 ((𝑠P𝑢P) → (𝑠<P 𝑢 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑢))))
42413adant2 1018 . . . . . . . 8 ((𝑠P𝑡P𝑢P) → (𝑠<P 𝑢 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑢))))
4342biimprd 158 . . . . . . 7 ((𝑠P𝑡P𝑢P) → (∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑢)) → 𝑠<P 𝑢))
4443adantr 276 . . . . . 6 (((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) → (∃𝑞Q (𝑞 ∈ (2nd𝑠) ∧ 𝑞 ∈ (1st𝑢)) → 𝑠<P 𝑢))
4540, 44mpd 13 . . . . 5 (((𝑠P𝑡P𝑢P) ∧ (𝑠<P 𝑡𝑡<P 𝑢)) → 𝑠<P 𝑢)
4645ex 115 . . . 4 ((𝑠P𝑡P𝑢P) → ((𝑠<P 𝑡𝑡<P 𝑢) → 𝑠<P 𝑢))
4746adantl 277 . . 3 ((⊤ ∧ (𝑠P𝑡P𝑢P)) → ((𝑠<P 𝑡𝑡<P 𝑢) → 𝑠<P 𝑢))
4810, 47ispod 4336 . 2 (⊤ → <P Po P)
4948mptru 1373 1 <P Po P
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980  wtru 1365  wcel 2164  wrex 2473  cop 3622   class class class wbr 4030   Po wpo 4326  cfv 5255  1st c1st 6193  2nd c2nd 6194  Qcnq 7342   <Q cltq 7347  Pcnp 7353  <P cltp 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-mi 7368  df-lti 7369  df-enq 7409  df-nqqs 7410  df-ltnqqs 7415  df-inp 7528  df-iltp 7532
This theorem is referenced by:  ltsopr  7658
  Copyright terms: Public domain W3C validator