ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ov6g GIF version

Theorem ov6g 5860
Description: The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006.)
Hypotheses
Ref Expression
ov6g.1 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑅 = 𝑆)
ov6g.2 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)}
Assertion
Ref Expression
ov6g (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑧,𝑅   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝐽(𝑥,𝑦,𝑧)

Proof of Theorem ov6g
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-ov 5729 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 eqid 2113 . . . . . 6 𝑆 = 𝑆
3 biidd 171 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑆 = 𝑆𝑆 = 𝑆))
43copsex2g 4126 . . . . . 6 ((𝐴𝐺𝐵𝐻) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆) ↔ 𝑆 = 𝑆))
52, 4mpbiri 167 . . . . 5 ((𝐴𝐺𝐵𝐻) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆))
653adant3 982 . . . 4 ((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆))
76adantr 272 . . 3 (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆))
8 eqeq1 2119 . . . . . . . 8 (𝑤 = ⟨𝐴, 𝐵⟩ → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩))
98anbi1d 458 . . . . . . 7 (𝑤 = ⟨𝐴, 𝐵⟩ → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
10 ov6g.1 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑅 = 𝑆)
1110eqeq2d 2124 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → (𝑧 = 𝑅𝑧 = 𝑆))
1211eqcoms 2116 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝑧 = 𝑅𝑧 = 𝑆))
1312pm5.32i 447 . . . . . . 7 ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆))
149, 13syl6bb 195 . . . . . 6 (𝑤 = ⟨𝐴, 𝐵⟩ → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆)))
15142exbidv 1820 . . . . 5 (𝑤 = ⟨𝐴, 𝐵⟩ → (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅) ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆)))
16 eqeq1 2119 . . . . . . 7 (𝑧 = 𝑆 → (𝑧 = 𝑆𝑆 = 𝑆))
1716anbi2d 457 . . . . . 6 (𝑧 = 𝑆 → ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆)))
18172exbidv 1820 . . . . 5 (𝑧 = 𝑆 → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆) ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆)))
19 moeq 2826 . . . . . . 7 ∃*𝑧 𝑧 = 𝑅
2019mosubop 4563 . . . . . 6 ∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)
2120a1i 9 . . . . 5 (𝑤𝐶 → ∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅))
22 ov6g.2 . . . . . 6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)}
23 dfoprab2 5770 . . . . . 6 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅))}
24 eleq1 2175 . . . . . . . . . . . 12 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤𝐶 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐶))
2524anbi1d 458 . . . . . . . . . . 11 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝑤𝐶𝑧 = 𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)))
2625pm5.32i 447 . . . . . . . . . 10 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑤𝐶𝑧 = 𝑅)) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)))
27 an12 533 . . . . . . . . . 10 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑤𝐶𝑧 = 𝑅)) ↔ (𝑤𝐶 ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
2826, 27bitr3i 185 . . . . . . . . 9 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)) ↔ (𝑤𝐶 ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
29282exbii 1566 . . . . . . . 8 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)) ↔ ∃𝑥𝑦(𝑤𝐶 ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
30 19.42vv 1861 . . . . . . . 8 (∃𝑥𝑦(𝑤𝐶 ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)) ↔ (𝑤𝐶 ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
3129, 30bitri 183 . . . . . . 7 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)) ↔ (𝑤𝐶 ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
3231opabbii 3953 . . . . . 6 {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅))} = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐶 ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅))}
3322, 23, 323eqtri 2137 . . . . 5 𝐹 = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐶 ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅))}
3415, 18, 21, 33fvopab3ig 5447 . . . 4 ((⟨𝐴, 𝐵⟩ ∈ 𝐶𝑆𝐽) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆) → (𝐹‘⟨𝐴, 𝐵⟩) = 𝑆))
35343ad2antl3 1126 . . 3 (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆) → (𝐹‘⟨𝐴, 𝐵⟩) = 𝑆))
367, 35mpd 13 . 2 (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → (𝐹‘⟨𝐴, 𝐵⟩) = 𝑆)
371, 36syl5eq 2157 1 (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 943   = wceq 1312  wex 1449  wcel 1461  ∃*wmo 1974  cop 3494  {copab 3946  cfv 5079  (class class class)co 5726  {coprab 5727
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-sbc 2877  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-iota 5044  df-fun 5081  df-fv 5087  df-ov 5729  df-oprab 5730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator