| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-ov 5925 | 
. 2
⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | 
| 2 |   | eqid 2196 | 
. . . . . 6
⊢ 𝑆 = 𝑆 | 
| 3 |   | biidd 172 | 
. . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑆 = 𝑆 ↔ 𝑆 = 𝑆)) | 
| 4 | 3 | copsex2g 4279 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑆 = 𝑆) ↔ 𝑆 = 𝑆)) | 
| 5 | 2, 4 | mpbiri 168 | 
. . . . 5
⊢ ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑆 = 𝑆)) | 
| 6 | 5 | 3adant3 1019 | 
. . . 4
⊢ ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑆 = 𝑆)) | 
| 7 | 6 | adantr 276 | 
. . 3
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) ∧ 𝑆 ∈ 𝐽) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑆 = 𝑆)) | 
| 8 |   | eqeq1 2203 | 
. . . . . . . 8
⊢ (𝑤 = 〈𝐴, 𝐵〉 → (𝑤 = 〈𝑥, 𝑦〉 ↔ 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉)) | 
| 9 | 8 | anbi1d 465 | 
. . . . . . 7
⊢ (𝑤 = 〈𝐴, 𝐵〉 → ((𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅) ↔ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅))) | 
| 10 |   | ov6g.1 | 
. . . . . . . . . 10
⊢
(〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 → 𝑅 = 𝑆) | 
| 11 | 10 | eqeq2d 2208 | 
. . . . . . . . 9
⊢
(〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 → (𝑧 = 𝑅 ↔ 𝑧 = 𝑆)) | 
| 12 | 11 | eqcoms 2199 | 
. . . . . . . 8
⊢
(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → (𝑧 = 𝑅 ↔ 𝑧 = 𝑆)) | 
| 13 | 12 | pm5.32i 454 | 
. . . . . . 7
⊢
((〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅) ↔ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑆)) | 
| 14 | 9, 13 | bitrdi 196 | 
. . . . . 6
⊢ (𝑤 = 〈𝐴, 𝐵〉 → ((𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅) ↔ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑆))) | 
| 15 | 14 | 2exbidv 1882 | 
. . . . 5
⊢ (𝑤 = 〈𝐴, 𝐵〉 → (∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅) ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑆))) | 
| 16 |   | eqeq1 2203 | 
. . . . . . 7
⊢ (𝑧 = 𝑆 → (𝑧 = 𝑆 ↔ 𝑆 = 𝑆)) | 
| 17 | 16 | anbi2d 464 | 
. . . . . 6
⊢ (𝑧 = 𝑆 → ((〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑆) ↔ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑆 = 𝑆))) | 
| 18 | 17 | 2exbidv 1882 | 
. . . . 5
⊢ (𝑧 = 𝑆 → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑆) ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑆 = 𝑆))) | 
| 19 |   | moeq 2939 | 
. . . . . . 7
⊢
∃*𝑧 𝑧 = 𝑅 | 
| 20 | 19 | mosubop 4729 | 
. . . . . 6
⊢
∃*𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅) | 
| 21 | 20 | a1i 9 | 
. . . . 5
⊢ (𝑤 ∈ 𝐶 → ∃*𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅)) | 
| 22 |   | ov6g.2 | 
. . . . . 6
⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅)} | 
| 23 |   | dfoprab2 5969 | 
. . . . . 6
⊢
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅)} = {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅))} | 
| 24 |   | eleq1 2259 | 
. . . . . . . . . . . 12
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑤 ∈ 𝐶 ↔ 〈𝑥, 𝑦〉 ∈ 𝐶)) | 
| 25 | 24 | anbi1d 465 | 
. . . . . . . . . . 11
⊢ (𝑤 = 〈𝑥, 𝑦〉 → ((𝑤 ∈ 𝐶 ∧ 𝑧 = 𝑅) ↔ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅))) | 
| 26 | 25 | pm5.32i 454 | 
. . . . . . . . . 10
⊢ ((𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑤 ∈ 𝐶 ∧ 𝑧 = 𝑅)) ↔ (𝑤 = 〈𝑥, 𝑦〉 ∧ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅))) | 
| 27 |   | an12 561 | 
. . . . . . . . . 10
⊢ ((𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑤 ∈ 𝐶 ∧ 𝑧 = 𝑅)) ↔ (𝑤 ∈ 𝐶 ∧ (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅))) | 
| 28 | 26, 27 | bitr3i 186 | 
. . . . . . . . 9
⊢ ((𝑤 = 〈𝑥, 𝑦〉 ∧ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅)) ↔ (𝑤 ∈ 𝐶 ∧ (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅))) | 
| 29 | 28 | 2exbii 1620 | 
. . . . . . . 8
⊢
(∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅)) ↔ ∃𝑥∃𝑦(𝑤 ∈ 𝐶 ∧ (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅))) | 
| 30 |   | 19.42vv 1926 | 
. . . . . . . 8
⊢
(∃𝑥∃𝑦(𝑤 ∈ 𝐶 ∧ (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅)) ↔ (𝑤 ∈ 𝐶 ∧ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅))) | 
| 31 | 29, 30 | bitri 184 | 
. . . . . . 7
⊢
(∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅)) ↔ (𝑤 ∈ 𝐶 ∧ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅))) | 
| 32 | 31 | opabbii 4100 | 
. . . . . 6
⊢
{〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅))} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐶 ∧ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅))} | 
| 33 | 22, 23, 32 | 3eqtri 2221 | 
. . . . 5
⊢ 𝐹 = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐶 ∧ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅))} | 
| 34 | 15, 18, 21, 33 | fvopab3ig 5635 | 
. . . 4
⊢
((〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝑆 ∈ 𝐽) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑆 = 𝑆) → (𝐹‘〈𝐴, 𝐵〉) = 𝑆)) | 
| 35 | 34 | 3ad2antl3 1163 | 
. . 3
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) ∧ 𝑆 ∈ 𝐽) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑆 = 𝑆) → (𝐹‘〈𝐴, 𝐵〉) = 𝑆)) | 
| 36 | 7, 35 | mpd 13 | 
. 2
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) ∧ 𝑆 ∈ 𝐽) → (𝐹‘〈𝐴, 𝐵〉) = 𝑆) | 
| 37 | 1, 36 | eqtrid 2241 | 
1
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) ∧ 𝑆 ∈ 𝐽) → (𝐴𝐹𝐵) = 𝑆) |