ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addassnqg GIF version

Theorem addassnqg 7344
Description: Addition of positive fractions is associative. (Contributed by Jim Kingdon, 16-Sep-2019.)
Assertion
Ref Expression
addassnqg ((𝐴Q𝐵Q𝐶Q) → ((𝐴 +Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q 𝐶)))

Proof of Theorem addassnqg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7310 . 2 Q = ((N × N) / ~Q )
2 addpipqqs 7332 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q )
3 addpipqqs 7332 . 2 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q )
4 addpipqqs 7332 . 2 (((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N) ∧ (𝑣N𝑢N)) → ([⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ·N 𝑢) +N ((𝑦 ·N 𝑤) ·N 𝑣)), ((𝑦 ·N 𝑤) ·N 𝑢)⟩] ~Q )
5 addpipqqs 7332 . 2 (((𝑥N𝑦N) ∧ (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q ) = [⟨((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))), (𝑦 ·N (𝑤 ·N 𝑢))⟩] ~Q )
6 mulclpi 7290 . . . . 5 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) ∈ N)
76ad2ant2rl 508 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑥 ·N 𝑤) ∈ N)
8 mulclpi 7290 . . . . 5 ((𝑦N𝑧N) → (𝑦 ·N 𝑧) ∈ N)
98ad2ant2lr 507 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑦 ·N 𝑧) ∈ N)
10 addclpi 7289 . . . 4 (((𝑥 ·N 𝑤) ∈ N ∧ (𝑦 ·N 𝑧) ∈ N) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N)
117, 9, 10syl2anc 409 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N)
12 mulclpi 7290 . . . 4 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
1312ad2ant2l 505 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑦 ·N 𝑤) ∈ N)
1411, 13jca 304 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
15 mulclpi 7290 . . . . 5 ((𝑧N𝑢N) → (𝑧 ·N 𝑢) ∈ N)
1615ad2ant2rl 508 . . . 4 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑢) ∈ N)
17 mulclpi 7290 . . . . 5 ((𝑤N𝑣N) → (𝑤 ·N 𝑣) ∈ N)
1817ad2ant2lr 507 . . . 4 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑣) ∈ N)
19 addclpi 7289 . . . 4 (((𝑧 ·N 𝑢) ∈ N ∧ (𝑤 ·N 𝑣) ∈ N) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
2016, 18, 19syl2anc 409 . . 3 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
21 mulclpi 7290 . . . 4 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
2221ad2ant2l 505 . . 3 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
2320, 22jca 304 . 2 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N))
24 simp1l 1016 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑥N)
25 simp2r 1019 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑤N)
26 simp3r 1021 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑢N)
2725, 26, 21syl2anc 409 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
28 mulclpi 7290 . . . . 5 ((𝑥N ∧ (𝑤 ·N 𝑢) ∈ N) → (𝑥 ·N (𝑤 ·N 𝑢)) ∈ N)
2924, 27, 28syl2anc 409 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑥 ·N (𝑤 ·N 𝑢)) ∈ N)
30 simp1r 1017 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑦N)
31 simp2l 1018 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑧N)
3231, 26, 15syl2anc 409 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑢) ∈ N)
33 mulclpi 7290 . . . . 5 ((𝑦N ∧ (𝑧 ·N 𝑢) ∈ N) → (𝑦 ·N (𝑧 ·N 𝑢)) ∈ N)
3430, 32, 33syl2anc 409 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N (𝑧 ·N 𝑢)) ∈ N)
35 simp3l 1020 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑣N)
3625, 35, 17syl2anc 409 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑣) ∈ N)
37 mulclpi 7290 . . . . 5 ((𝑦N ∧ (𝑤 ·N 𝑣) ∈ N) → (𝑦 ·N (𝑤 ·N 𝑣)) ∈ N)
3830, 36, 37syl2anc 409 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N (𝑤 ·N 𝑣)) ∈ N)
39 addasspig 7292 . . . 4 (((𝑥 ·N (𝑤 ·N 𝑢)) ∈ N ∧ (𝑦 ·N (𝑧 ·N 𝑢)) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑣)) ∈ N) → (((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N (𝑧 ·N 𝑢))) +N (𝑦 ·N (𝑤 ·N 𝑣))) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣)))))
4029, 34, 38, 39syl3anc 1233 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N (𝑧 ·N 𝑢))) +N (𝑦 ·N (𝑤 ·N 𝑣))) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣)))))
41 mulcompig 7293 . . . . . 6 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
4241adantl 275 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
43 distrpig 7295 . . . . . . . 8 ((N𝑓N𝑔N) → ( ·N (𝑓 +N 𝑔)) = (( ·N 𝑓) +N ( ·N 𝑔)))
44433coml 1205 . . . . . . 7 ((𝑓N𝑔NN) → ( ·N (𝑓 +N 𝑔)) = (( ·N 𝑓) +N ( ·N 𝑔)))
45 addclpi 7289 . . . . . . . . . 10 ((𝑓N𝑔N) → (𝑓 +N 𝑔) ∈ N)
46 mulcompig 7293 . . . . . . . . . 10 ((N ∧ (𝑓 +N 𝑔) ∈ N) → ( ·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔) ·N ))
4745, 46sylan2 284 . . . . . . . . 9 ((N ∧ (𝑓N𝑔N)) → ( ·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔) ·N ))
4847ancoms 266 . . . . . . . 8 (((𝑓N𝑔N) ∧ N) → ( ·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔) ·N ))
49483impa 1189 . . . . . . 7 ((𝑓N𝑔NN) → ( ·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔) ·N ))
50 mulcompig 7293 . . . . . . . . . 10 ((N𝑓N) → ( ·N 𝑓) = (𝑓 ·N ))
5150ancoms 266 . . . . . . . . 9 ((𝑓NN) → ( ·N 𝑓) = (𝑓 ·N ))
52513adant2 1011 . . . . . . . 8 ((𝑓N𝑔NN) → ( ·N 𝑓) = (𝑓 ·N ))
53 mulcompig 7293 . . . . . . . . . 10 ((N𝑔N) → ( ·N 𝑔) = (𝑔 ·N ))
5453ancoms 266 . . . . . . . . 9 ((𝑔NN) → ( ·N 𝑔) = (𝑔 ·N ))
55543adant1 1010 . . . . . . . 8 ((𝑓N𝑔NN) → ( ·N 𝑔) = (𝑔 ·N ))
5652, 55oveq12d 5871 . . . . . . 7 ((𝑓N𝑔NN) → (( ·N 𝑓) +N ( ·N 𝑔)) = ((𝑓 ·N ) +N (𝑔 ·N )))
5744, 49, 563eqtr3d 2211 . . . . . 6 ((𝑓N𝑔NN) → ((𝑓 +N 𝑔) ·N ) = ((𝑓 ·N ) +N (𝑔 ·N )))
5857adantl 275 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔NN)) → ((𝑓 +N 𝑔) ·N ) = ((𝑓 ·N ) +N (𝑔 ·N )))
59 mulasspig 7294 . . . . . 6 ((𝑓N𝑔NN) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
6059adantl 275 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
61 mulclpi 7290 . . . . . 6 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) ∈ N)
6261adantl 275 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
6342, 58, 60, 62, 24, 30, 25, 31, 26caovdilemd 6044 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ·N 𝑢) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N (𝑧 ·N 𝑢))))
64 mulasspig 7294 . . . . . . 7 ((𝑦N𝑤N𝑣N) → ((𝑦 ·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤 ·N 𝑣)))
65643adant1l 1225 . . . . . 6 (((𝑥N𝑦N) ∧ 𝑤N𝑣N) → ((𝑦 ·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤 ·N 𝑣)))
66653adant2l 1227 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ 𝑣N) → ((𝑦 ·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤 ·N 𝑣)))
67663adant3r 1230 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑦 ·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤 ·N 𝑣)))
6863, 67oveq12d 5871 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ·N 𝑢) +N ((𝑦 ·N 𝑤) ·N 𝑣)) = (((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N (𝑧 ·N 𝑢))) +N (𝑦 ·N (𝑤 ·N 𝑣))))
69 distrpig 7295 . . . . 5 ((𝑦N ∧ (𝑧 ·N 𝑢) ∈ N ∧ (𝑤 ·N 𝑣) ∈ N) → (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣))))
7030, 32, 36, 69syl3anc 1233 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣))))
7170oveq2d 5869 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣)))))
7240, 68, 713eqtr4d 2213 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ·N 𝑢) +N ((𝑦 ·N 𝑤) ·N 𝑣)) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))))
73 mulasspig 7294 . . . . 5 ((𝑦N𝑤N𝑢N) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
74733adant1l 1225 . . . 4 (((𝑥N𝑦N) ∧ 𝑤N𝑢N) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
75743adant2l 1227 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ 𝑢N) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
76753adant3l 1229 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
771, 2, 3, 4, 5, 14, 23, 72, 76ecoviass 6623 1 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 +Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  (class class class)co 5853  Ncnpi 7234   +N cpli 7235   ·N cmi 7236   ~Q ceq 7241  Qcnq 7242   +Q cplq 7244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-plpq 7306  df-enq 7309  df-nqqs 7310  df-plqqs 7311
This theorem is referenced by:  ltaddnq  7369  addlocprlemeqgt  7494  addassprg  7541  ltexprlemloc  7569  ltexprlemrl  7572  ltexprlemru  7574  addcanprleml  7576  addcanprlemu  7577  cauappcvgprlemdisj  7613  cauappcvgprlemloc  7614  cauappcvgprlemladdfl  7617  cauappcvgprlemladdru  7618  cauappcvgprlemladdrl  7619  cauappcvgprlem1  7621  caucvgprlemloc  7637  caucvgprlemladdrl  7640  caucvgprprlemloccalc  7646
  Copyright terms: Public domain W3C validator