ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addassnqg GIF version

Theorem addassnqg 7190
Description: Addition of positive fractions is associative. (Contributed by Jim Kingdon, 16-Sep-2019.)
Assertion
Ref Expression
addassnqg ((𝐴Q𝐵Q𝐶Q) → ((𝐴 +Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q 𝐶)))

Proof of Theorem addassnqg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7156 . 2 Q = ((N × N) / ~Q )
2 addpipqqs 7178 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q )
3 addpipqqs 7178 . 2 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q )
4 addpipqqs 7178 . 2 (((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N) ∧ (𝑣N𝑢N)) → ([⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ·N 𝑢) +N ((𝑦 ·N 𝑤) ·N 𝑣)), ((𝑦 ·N 𝑤) ·N 𝑢)⟩] ~Q )
5 addpipqqs 7178 . 2 (((𝑥N𝑦N) ∧ (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q ) = [⟨((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))), (𝑦 ·N (𝑤 ·N 𝑢))⟩] ~Q )
6 mulclpi 7136 . . . . 5 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) ∈ N)
76ad2ant2rl 502 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑥 ·N 𝑤) ∈ N)
8 mulclpi 7136 . . . . 5 ((𝑦N𝑧N) → (𝑦 ·N 𝑧) ∈ N)
98ad2ant2lr 501 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑦 ·N 𝑧) ∈ N)
10 addclpi 7135 . . . 4 (((𝑥 ·N 𝑤) ∈ N ∧ (𝑦 ·N 𝑧) ∈ N) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N)
117, 9, 10syl2anc 408 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N)
12 mulclpi 7136 . . . 4 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
1312ad2ant2l 499 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑦 ·N 𝑤) ∈ N)
1411, 13jca 304 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
15 mulclpi 7136 . . . . 5 ((𝑧N𝑢N) → (𝑧 ·N 𝑢) ∈ N)
1615ad2ant2rl 502 . . . 4 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑢) ∈ N)
17 mulclpi 7136 . . . . 5 ((𝑤N𝑣N) → (𝑤 ·N 𝑣) ∈ N)
1817ad2ant2lr 501 . . . 4 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑣) ∈ N)
19 addclpi 7135 . . . 4 (((𝑧 ·N 𝑢) ∈ N ∧ (𝑤 ·N 𝑣) ∈ N) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
2016, 18, 19syl2anc 408 . . 3 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
21 mulclpi 7136 . . . 4 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
2221ad2ant2l 499 . . 3 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
2320, 22jca 304 . 2 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N))
24 simp1l 1005 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑥N)
25 simp2r 1008 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑤N)
26 simp3r 1010 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑢N)
2725, 26, 21syl2anc 408 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
28 mulclpi 7136 . . . . 5 ((𝑥N ∧ (𝑤 ·N 𝑢) ∈ N) → (𝑥 ·N (𝑤 ·N 𝑢)) ∈ N)
2924, 27, 28syl2anc 408 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑥 ·N (𝑤 ·N 𝑢)) ∈ N)
30 simp1r 1006 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑦N)
31 simp2l 1007 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑧N)
3231, 26, 15syl2anc 408 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑢) ∈ N)
33 mulclpi 7136 . . . . 5 ((𝑦N ∧ (𝑧 ·N 𝑢) ∈ N) → (𝑦 ·N (𝑧 ·N 𝑢)) ∈ N)
3430, 32, 33syl2anc 408 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N (𝑧 ·N 𝑢)) ∈ N)
35 simp3l 1009 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑣N)
3625, 35, 17syl2anc 408 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑣) ∈ N)
37 mulclpi 7136 . . . . 5 ((𝑦N ∧ (𝑤 ·N 𝑣) ∈ N) → (𝑦 ·N (𝑤 ·N 𝑣)) ∈ N)
3830, 36, 37syl2anc 408 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N (𝑤 ·N 𝑣)) ∈ N)
39 addasspig 7138 . . . 4 (((𝑥 ·N (𝑤 ·N 𝑢)) ∈ N ∧ (𝑦 ·N (𝑧 ·N 𝑢)) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑣)) ∈ N) → (((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N (𝑧 ·N 𝑢))) +N (𝑦 ·N (𝑤 ·N 𝑣))) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣)))))
4029, 34, 38, 39syl3anc 1216 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N (𝑧 ·N 𝑢))) +N (𝑦 ·N (𝑤 ·N 𝑣))) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣)))))
41 mulcompig 7139 . . . . . 6 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
4241adantl 275 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
43 distrpig 7141 . . . . . . . 8 ((N𝑓N𝑔N) → ( ·N (𝑓 +N 𝑔)) = (( ·N 𝑓) +N ( ·N 𝑔)))
44433coml 1188 . . . . . . 7 ((𝑓N𝑔NN) → ( ·N (𝑓 +N 𝑔)) = (( ·N 𝑓) +N ( ·N 𝑔)))
45 addclpi 7135 . . . . . . . . . 10 ((𝑓N𝑔N) → (𝑓 +N 𝑔) ∈ N)
46 mulcompig 7139 . . . . . . . . . 10 ((N ∧ (𝑓 +N 𝑔) ∈ N) → ( ·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔) ·N ))
4745, 46sylan2 284 . . . . . . . . 9 ((N ∧ (𝑓N𝑔N)) → ( ·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔) ·N ))
4847ancoms 266 . . . . . . . 8 (((𝑓N𝑔N) ∧ N) → ( ·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔) ·N ))
49483impa 1176 . . . . . . 7 ((𝑓N𝑔NN) → ( ·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔) ·N ))
50 mulcompig 7139 . . . . . . . . . 10 ((N𝑓N) → ( ·N 𝑓) = (𝑓 ·N ))
5150ancoms 266 . . . . . . . . 9 ((𝑓NN) → ( ·N 𝑓) = (𝑓 ·N ))
52513adant2 1000 . . . . . . . 8 ((𝑓N𝑔NN) → ( ·N 𝑓) = (𝑓 ·N ))
53 mulcompig 7139 . . . . . . . . . 10 ((N𝑔N) → ( ·N 𝑔) = (𝑔 ·N ))
5453ancoms 266 . . . . . . . . 9 ((𝑔NN) → ( ·N 𝑔) = (𝑔 ·N ))
55543adant1 999 . . . . . . . 8 ((𝑓N𝑔NN) → ( ·N 𝑔) = (𝑔 ·N ))
5652, 55oveq12d 5792 . . . . . . 7 ((𝑓N𝑔NN) → (( ·N 𝑓) +N ( ·N 𝑔)) = ((𝑓 ·N ) +N (𝑔 ·N )))
5744, 49, 563eqtr3d 2180 . . . . . 6 ((𝑓N𝑔NN) → ((𝑓 +N 𝑔) ·N ) = ((𝑓 ·N ) +N (𝑔 ·N )))
5857adantl 275 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔NN)) → ((𝑓 +N 𝑔) ·N ) = ((𝑓 ·N ) +N (𝑔 ·N )))
59 mulasspig 7140 . . . . . 6 ((𝑓N𝑔NN) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
6059adantl 275 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
61 mulclpi 7136 . . . . . 6 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) ∈ N)
6261adantl 275 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
6342, 58, 60, 62, 24, 30, 25, 31, 26caovdilemd 5962 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ·N 𝑢) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N (𝑧 ·N 𝑢))))
64 mulasspig 7140 . . . . . . 7 ((𝑦N𝑤N𝑣N) → ((𝑦 ·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤 ·N 𝑣)))
65643adant1l 1208 . . . . . 6 (((𝑥N𝑦N) ∧ 𝑤N𝑣N) → ((𝑦 ·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤 ·N 𝑣)))
66653adant2l 1210 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ 𝑣N) → ((𝑦 ·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤 ·N 𝑣)))
67663adant3r 1213 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑦 ·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤 ·N 𝑣)))
6863, 67oveq12d 5792 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ·N 𝑢) +N ((𝑦 ·N 𝑤) ·N 𝑣)) = (((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N (𝑧 ·N 𝑢))) +N (𝑦 ·N (𝑤 ·N 𝑣))))
69 distrpig 7141 . . . . 5 ((𝑦N ∧ (𝑧 ·N 𝑢) ∈ N ∧ (𝑤 ·N 𝑣) ∈ N) → (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣))))
7030, 32, 36, 69syl3anc 1216 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣))))
7170oveq2d 5790 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣)))))
7240, 68, 713eqtr4d 2182 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ·N 𝑢) +N ((𝑦 ·N 𝑤) ·N 𝑣)) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))))
73 mulasspig 7140 . . . . 5 ((𝑦N𝑤N𝑢N) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
74733adant1l 1208 . . . 4 (((𝑥N𝑦N) ∧ 𝑤N𝑢N) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
75743adant2l 1210 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ 𝑢N) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
76753adant3l 1212 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
771, 2, 3, 4, 5, 14, 23, 72, 76ecoviass 6539 1 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 +Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  (class class class)co 5774  Ncnpi 7080   +N cpli 7081   ·N cmi 7082   ~Q ceq 7087  Qcnq 7088   +Q cplq 7090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-plpq 7152  df-enq 7155  df-nqqs 7156  df-plqqs 7157
This theorem is referenced by:  ltaddnq  7215  addlocprlemeqgt  7340  addassprg  7387  ltexprlemloc  7415  ltexprlemrl  7418  ltexprlemru  7420  addcanprleml  7422  addcanprlemu  7423  cauappcvgprlemdisj  7459  cauappcvgprlemloc  7460  cauappcvgprlemladdfl  7463  cauappcvgprlemladdru  7464  cauappcvgprlemladdrl  7465  cauappcvgprlem1  7467  caucvgprlemloc  7483  caucvgprlemladdrl  7486  caucvgprprlemloccalc  7492
  Copyright terms: Public domain W3C validator