ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addassnqg GIF version

Theorem addassnqg 7372
Description: Addition of positive fractions is associative. (Contributed by Jim Kingdon, 16-Sep-2019.)
Assertion
Ref Expression
addassnqg ((𝐴Q𝐵Q𝐶Q) → ((𝐴 +Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q 𝐶)))

Proof of Theorem addassnqg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7338 . 2 Q = ((N × N) / ~Q )
2 addpipqqs 7360 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q )
3 addpipqqs 7360 . 2 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q )
4 addpipqqs 7360 . 2 (((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N) ∧ (𝑣N𝑢N)) → ([⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ·N 𝑢) +N ((𝑦 ·N 𝑤) ·N 𝑣)), ((𝑦 ·N 𝑤) ·N 𝑢)⟩] ~Q )
5 addpipqqs 7360 . 2 (((𝑥N𝑦N) ∧ (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q ) = [⟨((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))), (𝑦 ·N (𝑤 ·N 𝑢))⟩] ~Q )
6 mulclpi 7318 . . . . 5 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) ∈ N)
76ad2ant2rl 511 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑥 ·N 𝑤) ∈ N)
8 mulclpi 7318 . . . . 5 ((𝑦N𝑧N) → (𝑦 ·N 𝑧) ∈ N)
98ad2ant2lr 510 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑦 ·N 𝑧) ∈ N)
10 addclpi 7317 . . . 4 (((𝑥 ·N 𝑤) ∈ N ∧ (𝑦 ·N 𝑧) ∈ N) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N)
117, 9, 10syl2anc 411 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N)
12 mulclpi 7318 . . . 4 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
1312ad2ant2l 508 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑦 ·N 𝑤) ∈ N)
1411, 13jca 306 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
15 mulclpi 7318 . . . . 5 ((𝑧N𝑢N) → (𝑧 ·N 𝑢) ∈ N)
1615ad2ant2rl 511 . . . 4 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑢) ∈ N)
17 mulclpi 7318 . . . . 5 ((𝑤N𝑣N) → (𝑤 ·N 𝑣) ∈ N)
1817ad2ant2lr 510 . . . 4 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑣) ∈ N)
19 addclpi 7317 . . . 4 (((𝑧 ·N 𝑢) ∈ N ∧ (𝑤 ·N 𝑣) ∈ N) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
2016, 18, 19syl2anc 411 . . 3 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
21 mulclpi 7318 . . . 4 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
2221ad2ant2l 508 . . 3 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
2320, 22jca 306 . 2 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N))
24 simp1l 1021 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑥N)
25 simp2r 1024 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑤N)
26 simp3r 1026 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑢N)
2725, 26, 21syl2anc 411 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
28 mulclpi 7318 . . . . 5 ((𝑥N ∧ (𝑤 ·N 𝑢) ∈ N) → (𝑥 ·N (𝑤 ·N 𝑢)) ∈ N)
2924, 27, 28syl2anc 411 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑥 ·N (𝑤 ·N 𝑢)) ∈ N)
30 simp1r 1022 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑦N)
31 simp2l 1023 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑧N)
3231, 26, 15syl2anc 411 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑢) ∈ N)
33 mulclpi 7318 . . . . 5 ((𝑦N ∧ (𝑧 ·N 𝑢) ∈ N) → (𝑦 ·N (𝑧 ·N 𝑢)) ∈ N)
3430, 32, 33syl2anc 411 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N (𝑧 ·N 𝑢)) ∈ N)
35 simp3l 1025 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑣N)
3625, 35, 17syl2anc 411 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑣) ∈ N)
37 mulclpi 7318 . . . . 5 ((𝑦N ∧ (𝑤 ·N 𝑣) ∈ N) → (𝑦 ·N (𝑤 ·N 𝑣)) ∈ N)
3830, 36, 37syl2anc 411 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N (𝑤 ·N 𝑣)) ∈ N)
39 addasspig 7320 . . . 4 (((𝑥 ·N (𝑤 ·N 𝑢)) ∈ N ∧ (𝑦 ·N (𝑧 ·N 𝑢)) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑣)) ∈ N) → (((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N (𝑧 ·N 𝑢))) +N (𝑦 ·N (𝑤 ·N 𝑣))) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣)))))
4029, 34, 38, 39syl3anc 1238 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N (𝑧 ·N 𝑢))) +N (𝑦 ·N (𝑤 ·N 𝑣))) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣)))))
41 mulcompig 7321 . . . . . 6 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
4241adantl 277 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
43 distrpig 7323 . . . . . . . 8 ((N𝑓N𝑔N) → ( ·N (𝑓 +N 𝑔)) = (( ·N 𝑓) +N ( ·N 𝑔)))
44433coml 1210 . . . . . . 7 ((𝑓N𝑔NN) → ( ·N (𝑓 +N 𝑔)) = (( ·N 𝑓) +N ( ·N 𝑔)))
45 addclpi 7317 . . . . . . . . . 10 ((𝑓N𝑔N) → (𝑓 +N 𝑔) ∈ N)
46 mulcompig 7321 . . . . . . . . . 10 ((N ∧ (𝑓 +N 𝑔) ∈ N) → ( ·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔) ·N ))
4745, 46sylan2 286 . . . . . . . . 9 ((N ∧ (𝑓N𝑔N)) → ( ·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔) ·N ))
4847ancoms 268 . . . . . . . 8 (((𝑓N𝑔N) ∧ N) → ( ·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔) ·N ))
49483impa 1194 . . . . . . 7 ((𝑓N𝑔NN) → ( ·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔) ·N ))
50 mulcompig 7321 . . . . . . . . . 10 ((N𝑓N) → ( ·N 𝑓) = (𝑓 ·N ))
5150ancoms 268 . . . . . . . . 9 ((𝑓NN) → ( ·N 𝑓) = (𝑓 ·N ))
52513adant2 1016 . . . . . . . 8 ((𝑓N𝑔NN) → ( ·N 𝑓) = (𝑓 ·N ))
53 mulcompig 7321 . . . . . . . . . 10 ((N𝑔N) → ( ·N 𝑔) = (𝑔 ·N ))
5453ancoms 268 . . . . . . . . 9 ((𝑔NN) → ( ·N 𝑔) = (𝑔 ·N ))
55543adant1 1015 . . . . . . . 8 ((𝑓N𝑔NN) → ( ·N 𝑔) = (𝑔 ·N ))
5652, 55oveq12d 5887 . . . . . . 7 ((𝑓N𝑔NN) → (( ·N 𝑓) +N ( ·N 𝑔)) = ((𝑓 ·N ) +N (𝑔 ·N )))
5744, 49, 563eqtr3d 2218 . . . . . 6 ((𝑓N𝑔NN) → ((𝑓 +N 𝑔) ·N ) = ((𝑓 ·N ) +N (𝑔 ·N )))
5857adantl 277 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔NN)) → ((𝑓 +N 𝑔) ·N ) = ((𝑓 ·N ) +N (𝑔 ·N )))
59 mulasspig 7322 . . . . . 6 ((𝑓N𝑔NN) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
6059adantl 277 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
61 mulclpi 7318 . . . . . 6 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) ∈ N)
6261adantl 277 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
6342, 58, 60, 62, 24, 30, 25, 31, 26caovdilemd 6060 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ·N 𝑢) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N (𝑧 ·N 𝑢))))
64 mulasspig 7322 . . . . . . 7 ((𝑦N𝑤N𝑣N) → ((𝑦 ·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤 ·N 𝑣)))
65643adant1l 1230 . . . . . 6 (((𝑥N𝑦N) ∧ 𝑤N𝑣N) → ((𝑦 ·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤 ·N 𝑣)))
66653adant2l 1232 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ 𝑣N) → ((𝑦 ·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤 ·N 𝑣)))
67663adant3r 1235 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑦 ·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤 ·N 𝑣)))
6863, 67oveq12d 5887 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ·N 𝑢) +N ((𝑦 ·N 𝑤) ·N 𝑣)) = (((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N (𝑧 ·N 𝑢))) +N (𝑦 ·N (𝑤 ·N 𝑣))))
69 distrpig 7323 . . . . 5 ((𝑦N ∧ (𝑧 ·N 𝑢) ∈ N ∧ (𝑤 ·N 𝑣) ∈ N) → (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣))))
7030, 32, 36, 69syl3anc 1238 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣))))
7170oveq2d 5885 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣)))))
7240, 68, 713eqtr4d 2220 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ·N 𝑢) +N ((𝑦 ·N 𝑤) ·N 𝑣)) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))))
73 mulasspig 7322 . . . . 5 ((𝑦N𝑤N𝑢N) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
74733adant1l 1230 . . . 4 (((𝑥N𝑦N) ∧ 𝑤N𝑢N) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
75743adant2l 1232 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ 𝑢N) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
76753adant3l 1234 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
771, 2, 3, 4, 5, 14, 23, 72, 76ecoviass 6639 1 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 +Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  (class class class)co 5869  Ncnpi 7262   +N cpli 7263   ·N cmi 7264   ~Q ceq 7269  Qcnq 7270   +Q cplq 7272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-plpq 7334  df-enq 7337  df-nqqs 7338  df-plqqs 7339
This theorem is referenced by:  ltaddnq  7397  addlocprlemeqgt  7522  addassprg  7569  ltexprlemloc  7597  ltexprlemrl  7600  ltexprlemru  7602  addcanprleml  7604  addcanprlemu  7605  cauappcvgprlemdisj  7641  cauappcvgprlemloc  7642  cauappcvgprlemladdfl  7645  cauappcvgprlemladdru  7646  cauappcvgprlemladdrl  7647  cauappcvgprlem1  7649  caucvgprlemloc  7665  caucvgprlemladdrl  7668  caucvgprprlemloccalc  7674
  Copyright terms: Public domain W3C validator