| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-nqqs 7415 | 
. 2
⊢
Q = ((N × N) /
~Q ) | 
| 2 |   | addpipqqs 7437 | 
. 2
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → ([〈𝑥, 𝑦〉] ~Q
+Q [〈𝑧, 𝑤〉] ~Q ) =
[〈((𝑥
·N 𝑤) +N (𝑦
·N 𝑧)), (𝑦 ·N 𝑤)〉]
~Q ) | 
| 3 |   | addpipqqs 7437 | 
. 2
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → ([〈𝑧, 𝑤〉] ~Q
+Q [〈𝑣, 𝑢〉] ~Q ) =
[〈((𝑧
·N 𝑢) +N (𝑤
·N 𝑣)), (𝑤 ·N 𝑢)〉]
~Q ) | 
| 4 |   | addpipqqs 7437 | 
. 2
⊢
(((((𝑥
·N 𝑤) +N (𝑦
·N 𝑧)) ∈ N ∧ (𝑦
·N 𝑤) ∈ N) ∧ (𝑣 ∈ N ∧
𝑢 ∈ N))
→ ([〈((𝑥
·N 𝑤) +N (𝑦
·N 𝑧)), (𝑦 ·N 𝑤)〉]
~Q +Q [〈𝑣, 𝑢〉] ~Q ) =
[〈((((𝑥
·N 𝑤) +N (𝑦
·N 𝑧)) ·N 𝑢) +N
((𝑦
·N 𝑤) ·N 𝑣)), ((𝑦 ·N 𝑤)
·N 𝑢)〉] ~Q
) | 
| 5 |   | addpipqqs 7437 | 
. 2
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (((𝑧
·N 𝑢) +N (𝑤
·N 𝑣)) ∈ N ∧ (𝑤
·N 𝑢) ∈ N)) →
([〈𝑥, 𝑦〉]
~Q +Q [〈((𝑧
·N 𝑢) +N (𝑤
·N 𝑣)), (𝑤 ·N 𝑢)〉]
~Q ) = [〈((𝑥 ·N (𝑤
·N 𝑢)) +N (𝑦
·N ((𝑧 ·N 𝑢) +N
(𝑤
·N 𝑣)))), (𝑦 ·N (𝑤
·N 𝑢))〉] ~Q
) | 
| 6 |   | mulclpi 7395 | 
. . . . 5
⊢ ((𝑥 ∈ N ∧
𝑤 ∈ N)
→ (𝑥
·N 𝑤) ∈ N) | 
| 7 | 6 | ad2ant2rl 511 | 
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → (𝑥 ·N 𝑤) ∈
N) | 
| 8 |   | mulclpi 7395 | 
. . . . 5
⊢ ((𝑦 ∈ N ∧
𝑧 ∈ N)
→ (𝑦
·N 𝑧) ∈ N) | 
| 9 | 8 | ad2ant2lr 510 | 
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → (𝑦 ·N 𝑧) ∈
N) | 
| 10 |   | addclpi 7394 | 
. . . 4
⊢ (((𝑥
·N 𝑤) ∈ N ∧ (𝑦
·N 𝑧) ∈ N) → ((𝑥
·N 𝑤) +N (𝑦
·N 𝑧)) ∈ N) | 
| 11 | 7, 9, 10 | syl2anc 411 | 
. . 3
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → ((𝑥 ·N 𝑤) +N
(𝑦
·N 𝑧)) ∈ N) | 
| 12 |   | mulclpi 7395 | 
. . . 4
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N)
→ (𝑦
·N 𝑤) ∈ N) | 
| 13 | 12 | ad2ant2l 508 | 
. . 3
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → (𝑦 ·N 𝑤) ∈
N) | 
| 14 | 11, 13 | jca 306 | 
. 2
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → (((𝑥 ·N 𝑤) +N
(𝑦
·N 𝑧)) ∈ N ∧ (𝑦
·N 𝑤) ∈ N)) | 
| 15 |   | mulclpi 7395 | 
. . . . 5
⊢ ((𝑧 ∈ N ∧
𝑢 ∈ N)
→ (𝑧
·N 𝑢) ∈ N) | 
| 16 | 15 | ad2ant2rl 511 | 
. . . 4
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → (𝑧 ·N 𝑢) ∈
N) | 
| 17 |   | mulclpi 7395 | 
. . . . 5
⊢ ((𝑤 ∈ N ∧
𝑣 ∈ N)
→ (𝑤
·N 𝑣) ∈ N) | 
| 18 | 17 | ad2ant2lr 510 | 
. . . 4
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → (𝑤 ·N 𝑣) ∈
N) | 
| 19 |   | addclpi 7394 | 
. . . 4
⊢ (((𝑧
·N 𝑢) ∈ N ∧ (𝑤
·N 𝑣) ∈ N) → ((𝑧
·N 𝑢) +N (𝑤
·N 𝑣)) ∈ N) | 
| 20 | 16, 18, 19 | syl2anc 411 | 
. . 3
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → ((𝑧 ·N 𝑢) +N
(𝑤
·N 𝑣)) ∈ N) | 
| 21 |   | mulclpi 7395 | 
. . . 4
⊢ ((𝑤 ∈ N ∧
𝑢 ∈ N)
→ (𝑤
·N 𝑢) ∈ N) | 
| 22 | 21 | ad2ant2l 508 | 
. . 3
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → (𝑤 ·N 𝑢) ∈
N) | 
| 23 | 20, 22 | jca 306 | 
. 2
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → (((𝑧 ·N 𝑢) +N
(𝑤
·N 𝑣)) ∈ N ∧ (𝑤
·N 𝑢) ∈ N)) | 
| 24 |   | simp1l 1023 | 
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
𝑥 ∈
N) | 
| 25 |   | simp2r 1026 | 
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
𝑤 ∈
N) | 
| 26 |   | simp3r 1028 | 
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
𝑢 ∈
N) | 
| 27 | 25, 26, 21 | syl2anc 411 | 
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑤
·N 𝑢) ∈ N) | 
| 28 |   | mulclpi 7395 | 
. . . . 5
⊢ ((𝑥 ∈ N ∧
(𝑤
·N 𝑢) ∈ N) → (𝑥
·N (𝑤 ·N 𝑢)) ∈
N) | 
| 29 | 24, 27, 28 | syl2anc 411 | 
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑥
·N (𝑤 ·N 𝑢)) ∈
N) | 
| 30 |   | simp1r 1024 | 
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
𝑦 ∈
N) | 
| 31 |   | simp2l 1025 | 
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
𝑧 ∈
N) | 
| 32 | 31, 26, 15 | syl2anc 411 | 
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑧
·N 𝑢) ∈ N) | 
| 33 |   | mulclpi 7395 | 
. . . . 5
⊢ ((𝑦 ∈ N ∧
(𝑧
·N 𝑢) ∈ N) → (𝑦
·N (𝑧 ·N 𝑢)) ∈
N) | 
| 34 | 30, 32, 33 | syl2anc 411 | 
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑦
·N (𝑧 ·N 𝑢)) ∈
N) | 
| 35 |   | simp3l 1027 | 
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
𝑣 ∈
N) | 
| 36 | 25, 35, 17 | syl2anc 411 | 
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑤
·N 𝑣) ∈ N) | 
| 37 |   | mulclpi 7395 | 
. . . . 5
⊢ ((𝑦 ∈ N ∧
(𝑤
·N 𝑣) ∈ N) → (𝑦
·N (𝑤 ·N 𝑣)) ∈
N) | 
| 38 | 30, 36, 37 | syl2anc 411 | 
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑦
·N (𝑤 ·N 𝑣)) ∈
N) | 
| 39 |   | addasspig 7397 | 
. . . 4
⊢ (((𝑥
·N (𝑤 ·N 𝑢)) ∈ N ∧
(𝑦
·N (𝑧 ·N 𝑢)) ∈ N ∧
(𝑦
·N (𝑤 ·N 𝑣)) ∈ N)
→ (((𝑥
·N (𝑤 ·N 𝑢)) +N
(𝑦
·N (𝑧 ·N 𝑢))) +N
(𝑦
·N (𝑤 ·N 𝑣))) = ((𝑥 ·N (𝑤
·N 𝑢)) +N ((𝑦
·N (𝑧 ·N 𝑢)) +N
(𝑦
·N (𝑤 ·N 𝑣))))) | 
| 40 | 29, 34, 38, 39 | syl3anc 1249 | 
. . 3
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(((𝑥
·N (𝑤 ·N 𝑢)) +N
(𝑦
·N (𝑧 ·N 𝑢))) +N
(𝑦
·N (𝑤 ·N 𝑣))) = ((𝑥 ·N (𝑤
·N 𝑢)) +N ((𝑦
·N (𝑧 ·N 𝑢)) +N
(𝑦
·N (𝑤 ·N 𝑣))))) | 
| 41 |   | mulcompig 7398 | 
. . . . . 6
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N)
→ (𝑓
·N 𝑔) = (𝑔 ·N 𝑓)) | 
| 42 | 41 | adantl 277 | 
. . . . 5
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) ∧
(𝑓 ∈ N
∧ 𝑔 ∈
N)) → (𝑓
·N 𝑔) = (𝑔 ·N 𝑓)) | 
| 43 |   | distrpig 7400 | 
. . . . . . . 8
⊢ ((ℎ ∈ N ∧
𝑓 ∈ N
∧ 𝑔 ∈
N) → (ℎ
·N (𝑓 +N 𝑔)) = ((ℎ ·N 𝑓) +N
(ℎ
·N 𝑔))) | 
| 44 | 43 | 3coml 1212 | 
. . . . . . 7
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N
∧ ℎ ∈
N) → (ℎ
·N (𝑓 +N 𝑔)) = ((ℎ ·N 𝑓) +N
(ℎ
·N 𝑔))) | 
| 45 |   | addclpi 7394 | 
. . . . . . . . . 10
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N)
→ (𝑓
+N 𝑔) ∈ N) | 
| 46 |   | mulcompig 7398 | 
. . . . . . . . . 10
⊢ ((ℎ ∈ N ∧
(𝑓
+N 𝑔) ∈ N) → (ℎ
·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔)
·N ℎ)) | 
| 47 | 45, 46 | sylan2 286 | 
. . . . . . . . 9
⊢ ((ℎ ∈ N ∧
(𝑓 ∈ N
∧ 𝑔 ∈
N)) → (ℎ
·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔)
·N ℎ)) | 
| 48 | 47 | ancoms 268 | 
. . . . . . . 8
⊢ (((𝑓 ∈ N ∧
𝑔 ∈ N)
∧ ℎ ∈
N) → (ℎ
·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔)
·N ℎ)) | 
| 49 | 48 | 3impa 1196 | 
. . . . . . 7
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N
∧ ℎ ∈
N) → (ℎ
·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔)
·N ℎ)) | 
| 50 |   | mulcompig 7398 | 
. . . . . . . . . 10
⊢ ((ℎ ∈ N ∧
𝑓 ∈ N)
→ (ℎ
·N 𝑓) = (𝑓 ·N ℎ)) | 
| 51 | 50 | ancoms 268 | 
. . . . . . . . 9
⊢ ((𝑓 ∈ N ∧
ℎ ∈ N)
→ (ℎ
·N 𝑓) = (𝑓 ·N ℎ)) | 
| 52 | 51 | 3adant2 1018 | 
. . . . . . . 8
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N
∧ ℎ ∈
N) → (ℎ
·N 𝑓) = (𝑓 ·N ℎ)) | 
| 53 |   | mulcompig 7398 | 
. . . . . . . . . 10
⊢ ((ℎ ∈ N ∧
𝑔 ∈ N)
→ (ℎ
·N 𝑔) = (𝑔 ·N ℎ)) | 
| 54 | 53 | ancoms 268 | 
. . . . . . . . 9
⊢ ((𝑔 ∈ N ∧
ℎ ∈ N)
→ (ℎ
·N 𝑔) = (𝑔 ·N ℎ)) | 
| 55 | 54 | 3adant1 1017 | 
. . . . . . . 8
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N
∧ ℎ ∈
N) → (ℎ
·N 𝑔) = (𝑔 ·N ℎ)) | 
| 56 | 52, 55 | oveq12d 5940 | 
. . . . . . 7
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N
∧ ℎ ∈
N) → ((ℎ
·N 𝑓) +N (ℎ
·N 𝑔)) = ((𝑓 ·N ℎ) +N
(𝑔
·N ℎ))) | 
| 57 | 44, 49, 56 | 3eqtr3d 2237 | 
. . . . . 6
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N
∧ ℎ ∈
N) → ((𝑓
+N 𝑔) ·N ℎ) = ((𝑓 ·N ℎ) +N
(𝑔
·N ℎ))) | 
| 58 | 57 | adantl 277 | 
. . . . 5
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) ∧
(𝑓 ∈ N
∧ 𝑔 ∈
N ∧ ℎ
∈ N)) → ((𝑓 +N 𝑔)
·N ℎ) = ((𝑓 ·N ℎ) +N
(𝑔
·N ℎ))) | 
| 59 |   | mulasspig 7399 | 
. . . . . 6
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N
∧ ℎ ∈
N) → ((𝑓
·N 𝑔) ·N ℎ) = (𝑓 ·N (𝑔
·N ℎ))) | 
| 60 | 59 | adantl 277 | 
. . . . 5
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) ∧
(𝑓 ∈ N
∧ 𝑔 ∈
N ∧ ℎ
∈ N)) → ((𝑓 ·N 𝑔)
·N ℎ) = (𝑓 ·N (𝑔
·N ℎ))) | 
| 61 |   | mulclpi 7395 | 
. . . . . 6
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N)
→ (𝑓
·N 𝑔) ∈ N) | 
| 62 | 61 | adantl 277 | 
. . . . 5
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) ∧
(𝑓 ∈ N
∧ 𝑔 ∈
N)) → (𝑓
·N 𝑔) ∈ N) | 
| 63 | 42, 58, 60, 62, 24, 30, 25, 31, 26 | caovdilemd 6115 | 
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(((𝑥
·N 𝑤) +N (𝑦
·N 𝑧)) ·N 𝑢) = ((𝑥 ·N (𝑤
·N 𝑢)) +N (𝑦
·N (𝑧 ·N 𝑢)))) | 
| 64 |   | mulasspig 7399 | 
. . . . . . 7
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N
∧ 𝑣 ∈
N) → ((𝑦
·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤
·N 𝑣))) | 
| 65 | 64 | 3adant1l 1232 | 
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ 𝑤 ∈
N ∧ 𝑣
∈ N) → ((𝑦 ·N 𝑤)
·N 𝑣) = (𝑦 ·N (𝑤
·N 𝑣))) | 
| 66 | 65 | 3adant2l 1234 | 
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ 𝑣 ∈ N) → ((𝑦
·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤
·N 𝑣))) | 
| 67 | 66 | 3adant3r 1237 | 
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑦
·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤
·N 𝑣))) | 
| 68 | 63, 67 | oveq12d 5940 | 
. . 3
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((((𝑥
·N 𝑤) +N (𝑦
·N 𝑧)) ·N 𝑢) +N
((𝑦
·N 𝑤) ·N 𝑣)) = (((𝑥 ·N (𝑤
·N 𝑢)) +N (𝑦
·N (𝑧 ·N 𝑢))) +N
(𝑦
·N (𝑤 ·N 𝑣)))) | 
| 69 |   | distrpig 7400 | 
. . . . 5
⊢ ((𝑦 ∈ N ∧
(𝑧
·N 𝑢) ∈ N ∧ (𝑤
·N 𝑣) ∈ N) → (𝑦
·N ((𝑧 ·N 𝑢) +N
(𝑤
·N 𝑣))) = ((𝑦 ·N (𝑧
·N 𝑢)) +N (𝑦
·N (𝑤 ·N 𝑣)))) | 
| 70 | 30, 32, 36, 69 | syl3anc 1249 | 
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑦
·N ((𝑧 ·N 𝑢) +N
(𝑤
·N 𝑣))) = ((𝑦 ·N (𝑧
·N 𝑢)) +N (𝑦
·N (𝑤 ·N 𝑣)))) | 
| 71 | 70 | oveq2d 5938 | 
. . 3
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑥
·N (𝑤 ·N 𝑢)) +N
(𝑦
·N ((𝑧 ·N 𝑢) +N
(𝑤
·N 𝑣)))) = ((𝑥 ·N (𝑤
·N 𝑢)) +N ((𝑦
·N (𝑧 ·N 𝑢)) +N
(𝑦
·N (𝑤 ·N 𝑣))))) | 
| 72 | 40, 68, 71 | 3eqtr4d 2239 | 
. 2
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((((𝑥
·N 𝑤) +N (𝑦
·N 𝑧)) ·N 𝑢) +N
((𝑦
·N 𝑤) ·N 𝑣)) = ((𝑥 ·N (𝑤
·N 𝑢)) +N (𝑦
·N ((𝑧 ·N 𝑢) +N
(𝑤
·N 𝑣))))) | 
| 73 |   | mulasspig 7399 | 
. . . . 5
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N
∧ 𝑢 ∈
N) → ((𝑦
·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤
·N 𝑢))) | 
| 74 | 73 | 3adant1l 1232 | 
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ 𝑤 ∈
N ∧ 𝑢
∈ N) → ((𝑦 ·N 𝑤)
·N 𝑢) = (𝑦 ·N (𝑤
·N 𝑢))) | 
| 75 | 74 | 3adant2l 1234 | 
. . 3
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ 𝑢 ∈ N) → ((𝑦
·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤
·N 𝑢))) | 
| 76 | 75 | 3adant3l 1236 | 
. 2
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑦
·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤
·N 𝑢))) | 
| 77 | 1, 2, 3, 4, 5, 14,
23, 72, 76 | ecoviass 6704 | 
1
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) → ((𝐴
+Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q
𝐶))) |