ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuloc GIF version

Theorem prmuloc 7650
Description: Positive reals are multiplicatively located. Lemma 12.8 of [BauerTaylor], p. 56. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
prmuloc ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → ∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
Distinct variable groups:   𝐴,𝑑,𝑢   𝐵,𝑑,𝑢   𝐿,𝑑,𝑢   𝑈,𝑑,𝑢

Proof of Theorem prmuloc
Dummy variables 𝑝 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 7493 . . 3 (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵)
21adantl 277 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵)
3 prml 7561 . . . 4 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑟Q 𝑟𝐿)
43ad2antrr 488 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) → ∃𝑟Q 𝑟𝐿)
5 simprl 529 . . . . . 6 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → 𝑟Q)
6 simplrl 535 . . . . . 6 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → 𝑥Q)
7 mulclnq 7460 . . . . . 6 ((𝑟Q𝑥Q) → (𝑟 ·Q 𝑥) ∈ Q)
85, 6, 7syl2anc 411 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → (𝑟 ·Q 𝑥) ∈ Q)
9 ltrelnq 7449 . . . . . . . 8 <Q ⊆ (Q × Q)
109brel 4716 . . . . . . 7 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
1110simprd 114 . . . . . 6 (𝐴 <Q 𝐵𝐵Q)
1211ad3antlr 493 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → 𝐵Q)
13 appdiv0nq 7648 . . . . 5 (((𝑟 ·Q 𝑥) ∈ Q𝐵Q) → ∃𝑝Q (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))
148, 12, 13syl2anc 411 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → ∃𝑝Q (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))
15 prarloc 7587 . . . . . . . . . 10 ((⟨𝐿, 𝑈⟩ ∈ P𝑝Q) → ∃𝑑𝐿𝑢𝑈 𝑢 <Q (𝑑 +Q 𝑝))
1615adantlr 477 . . . . . . . . 9 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑝Q) → ∃𝑑𝐿𝑢𝑈 𝑢 <Q (𝑑 +Q 𝑝))
1716adantlr 477 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ 𝑝Q) → ∃𝑑𝐿𝑢𝑈 𝑢 <Q (𝑑 +Q 𝑝))
1817ad2ant2r 509 . . . . . . 7 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) → ∃𝑑𝐿𝑢𝑈 𝑢 <Q (𝑑 +Q 𝑝))
19 r2ex 2517 . . . . . . 7 (∃𝑑𝐿𝑢𝑈 𝑢 <Q (𝑑 +Q 𝑝) ↔ ∃𝑑𝑢((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝)))
2018, 19sylib 122 . . . . . 6 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) → ∃𝑑𝑢((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝)))
21 elprnql 7565 . . . . . . . . . . . . . 14 ((⟨𝐿, 𝑈⟩ ∈ P𝑑𝐿) → 𝑑Q)
2221adantlr 477 . . . . . . . . . . . . 13 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑑𝐿) → 𝑑Q)
2322adantlr 477 . . . . . . . . . . . 12 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ 𝑑𝐿) → 𝑑Q)
2423adantlr 477 . . . . . . . . . . 11 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ 𝑑𝐿) → 𝑑Q)
2524ad2ant2r 509 . . . . . . . . . 10 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ (𝑑𝐿𝑢𝑈)) → 𝑑Q)
2625adantrr 479 . . . . . . . . 9 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑑Q)
27 simplll 533 . . . . . . . . . . 11 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → ⟨𝐿, 𝑈⟩ ∈ P)
2827ad2antrr 488 . . . . . . . . . 10 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → ⟨𝐿, 𝑈⟩ ∈ P)
29 simprl 529 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → (𝑑𝐿𝑢𝑈))
3029simprd 114 . . . . . . . . . 10 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑢𝑈)
31 elprnqu 7566 . . . . . . . . . 10 ((⟨𝐿, 𝑈⟩ ∈ P𝑢𝑈) → 𝑢Q)
3228, 30, 31syl2anc 411 . . . . . . . . 9 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑢Q)
33 prltlu 7571 . . . . . . . . . . . . . . . . 17 ((⟨𝐿, 𝑈⟩ ∈ P𝑟𝐿𝑢𝑈) → 𝑟 <Q 𝑢)
34333adant1r 1233 . . . . . . . . . . . . . . . 16 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟𝐿𝑢𝑈) → 𝑟 <Q 𝑢)
35343adant2l 1234 . . . . . . . . . . . . . . 15 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑟Q𝑟𝐿) ∧ 𝑢𝑈) → 𝑟 <Q 𝑢)
36353adant3l 1236 . . . . . . . . . . . . . 14 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑟Q𝑟𝐿) ∧ (𝑑𝐿𝑢𝑈)) → 𝑟 <Q 𝑢)
37363adant1r 1233 . . . . . . . . . . . . 13 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿) ∧ (𝑑𝐿𝑢𝑈)) → 𝑟 <Q 𝑢)
38373expa 1205 . . . . . . . . . . . 12 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑑𝐿𝑢𝑈)) → 𝑟 <Q 𝑢)
3938ad2ant2r 509 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑟 <Q 𝑢)
40 simprr 531 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑢 <Q (𝑑 +Q 𝑝))
41 simplrr 536 . . . . . . . . . . . 12 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → (𝐴 +Q 𝑥) = 𝐵)
4241ad2antrr 488 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → (𝐴 +Q 𝑥) = 𝐵)
43 simplrr 536 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))
4410simpld 112 . . . . . . . . . . . . 13 (𝐴 <Q 𝐵𝐴Q)
4544ad3antlr 493 . . . . . . . . . . . 12 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → 𝐴Q)
4645ad2antrr 488 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝐴Q)
4712ad2antrr 488 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝐵Q)
48 simplrl 535 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑝Q)
496ad2antrr 488 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑥Q)
5039, 40, 42, 43, 46, 47, 26, 48, 49prmuloclemcalc 7649 . . . . . . . . . 10 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵))
51 df-3an 982 . . . . . . . . . 10 ((𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)) ↔ ((𝑑𝐿𝑢𝑈) ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
5229, 50, 51sylanbrc 417 . . . . . . . . 9 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
5326, 32, 52jca31 309 . . . . . . . 8 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → ((𝑑Q𝑢Q) ∧ (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵))))
5453ex 115 . . . . . . 7 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) → (((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝)) → ((𝑑Q𝑢Q) ∧ (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))))
55542eximdv 1896 . . . . . 6 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) → (∃𝑑𝑢((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝)) → ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))))
5620, 55mpd 13 . . . . 5 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) → ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵))))
57 r2ex 2517 . . . . 5 (∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)) ↔ ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵))))
5856, 57sylibr 134 . . . 4 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) → ∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
5914, 58rexlimddv 2619 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → ∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
604, 59rexlimddv 2619 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) → ∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
612, 60rexlimddv 2619 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → ∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wex 1506  wcel 2167  wrex 2476  cop 3626   class class class wbr 4034  (class class class)co 5925  Qcnq 7364   +Q cplq 7366   ·Q cmq 7367   <Q cltq 7369  Pcnp 7375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550
This theorem is referenced by:  prmuloc2  7651  mullocpr  7655
  Copyright terms: Public domain W3C validator