ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuloc GIF version

Theorem prmuloc 7686
Description: Positive reals are multiplicatively located. Lemma 12.8 of [BauerTaylor], p. 56. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
prmuloc ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → ∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
Distinct variable groups:   𝐴,𝑑,𝑢   𝐵,𝑑,𝑢   𝐿,𝑑,𝑢   𝑈,𝑑,𝑢

Proof of Theorem prmuloc
Dummy variables 𝑝 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 7529 . . 3 (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵)
21adantl 277 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵)
3 prml 7597 . . . 4 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑟Q 𝑟𝐿)
43ad2antrr 488 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) → ∃𝑟Q 𝑟𝐿)
5 simprl 529 . . . . . 6 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → 𝑟Q)
6 simplrl 535 . . . . . 6 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → 𝑥Q)
7 mulclnq 7496 . . . . . 6 ((𝑟Q𝑥Q) → (𝑟 ·Q 𝑥) ∈ Q)
85, 6, 7syl2anc 411 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → (𝑟 ·Q 𝑥) ∈ Q)
9 ltrelnq 7485 . . . . . . . 8 <Q ⊆ (Q × Q)
109brel 4731 . . . . . . 7 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
1110simprd 114 . . . . . 6 (𝐴 <Q 𝐵𝐵Q)
1211ad3antlr 493 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → 𝐵Q)
13 appdiv0nq 7684 . . . . 5 (((𝑟 ·Q 𝑥) ∈ Q𝐵Q) → ∃𝑝Q (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))
148, 12, 13syl2anc 411 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → ∃𝑝Q (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))
15 prarloc 7623 . . . . . . . . . 10 ((⟨𝐿, 𝑈⟩ ∈ P𝑝Q) → ∃𝑑𝐿𝑢𝑈 𝑢 <Q (𝑑 +Q 𝑝))
1615adantlr 477 . . . . . . . . 9 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑝Q) → ∃𝑑𝐿𝑢𝑈 𝑢 <Q (𝑑 +Q 𝑝))
1716adantlr 477 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ 𝑝Q) → ∃𝑑𝐿𝑢𝑈 𝑢 <Q (𝑑 +Q 𝑝))
1817ad2ant2r 509 . . . . . . 7 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) → ∃𝑑𝐿𝑢𝑈 𝑢 <Q (𝑑 +Q 𝑝))
19 r2ex 2527 . . . . . . 7 (∃𝑑𝐿𝑢𝑈 𝑢 <Q (𝑑 +Q 𝑝) ↔ ∃𝑑𝑢((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝)))
2018, 19sylib 122 . . . . . 6 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) → ∃𝑑𝑢((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝)))
21 elprnql 7601 . . . . . . . . . . . . . 14 ((⟨𝐿, 𝑈⟩ ∈ P𝑑𝐿) → 𝑑Q)
2221adantlr 477 . . . . . . . . . . . . 13 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑑𝐿) → 𝑑Q)
2322adantlr 477 . . . . . . . . . . . 12 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ 𝑑𝐿) → 𝑑Q)
2423adantlr 477 . . . . . . . . . . 11 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ 𝑑𝐿) → 𝑑Q)
2524ad2ant2r 509 . . . . . . . . . 10 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ (𝑑𝐿𝑢𝑈)) → 𝑑Q)
2625adantrr 479 . . . . . . . . 9 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑑Q)
27 simplll 533 . . . . . . . . . . 11 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → ⟨𝐿, 𝑈⟩ ∈ P)
2827ad2antrr 488 . . . . . . . . . 10 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → ⟨𝐿, 𝑈⟩ ∈ P)
29 simprl 529 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → (𝑑𝐿𝑢𝑈))
3029simprd 114 . . . . . . . . . 10 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑢𝑈)
31 elprnqu 7602 . . . . . . . . . 10 ((⟨𝐿, 𝑈⟩ ∈ P𝑢𝑈) → 𝑢Q)
3228, 30, 31syl2anc 411 . . . . . . . . 9 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑢Q)
33 prltlu 7607 . . . . . . . . . . . . . . . . 17 ((⟨𝐿, 𝑈⟩ ∈ P𝑟𝐿𝑢𝑈) → 𝑟 <Q 𝑢)
34333adant1r 1234 . . . . . . . . . . . . . . . 16 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟𝐿𝑢𝑈) → 𝑟 <Q 𝑢)
35343adant2l 1235 . . . . . . . . . . . . . . 15 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑟Q𝑟𝐿) ∧ 𝑢𝑈) → 𝑟 <Q 𝑢)
36353adant3l 1237 . . . . . . . . . . . . . 14 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑟Q𝑟𝐿) ∧ (𝑑𝐿𝑢𝑈)) → 𝑟 <Q 𝑢)
37363adant1r 1234 . . . . . . . . . . . . 13 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿) ∧ (𝑑𝐿𝑢𝑈)) → 𝑟 <Q 𝑢)
38373expa 1206 . . . . . . . . . . . 12 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑑𝐿𝑢𝑈)) → 𝑟 <Q 𝑢)
3938ad2ant2r 509 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑟 <Q 𝑢)
40 simprr 531 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑢 <Q (𝑑 +Q 𝑝))
41 simplrr 536 . . . . . . . . . . . 12 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → (𝐴 +Q 𝑥) = 𝐵)
4241ad2antrr 488 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → (𝐴 +Q 𝑥) = 𝐵)
43 simplrr 536 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))
4410simpld 112 . . . . . . . . . . . . 13 (𝐴 <Q 𝐵𝐴Q)
4544ad3antlr 493 . . . . . . . . . . . 12 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → 𝐴Q)
4645ad2antrr 488 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝐴Q)
4712ad2antrr 488 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝐵Q)
48 simplrl 535 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑝Q)
496ad2antrr 488 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑥Q)
5039, 40, 42, 43, 46, 47, 26, 48, 49prmuloclemcalc 7685 . . . . . . . . . 10 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵))
51 df-3an 983 . . . . . . . . . 10 ((𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)) ↔ ((𝑑𝐿𝑢𝑈) ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
5229, 50, 51sylanbrc 417 . . . . . . . . 9 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
5326, 32, 52jca31 309 . . . . . . . 8 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → ((𝑑Q𝑢Q) ∧ (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵))))
5453ex 115 . . . . . . 7 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) → (((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝)) → ((𝑑Q𝑢Q) ∧ (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))))
55542eximdv 1906 . . . . . 6 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) → (∃𝑑𝑢((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝)) → ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))))
5620, 55mpd 13 . . . . 5 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) → ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵))))
57 r2ex 2527 . . . . 5 (∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)) ↔ ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵))))
5856, 57sylibr 134 . . . 4 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) → ∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
5914, 58rexlimddv 2629 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → ∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
604, 59rexlimddv 2629 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) → ∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
612, 60rexlimddv 2629 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → ∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wex 1516  wcel 2177  wrex 2486  cop 3637   class class class wbr 4047  (class class class)co 5951  Qcnq 7400   +Q cplq 7402   ·Q cmq 7403   <Q cltq 7405  Pcnp 7411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-eprel 4340  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-1o 6509  df-2o 6510  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-pli 7425  df-mi 7426  df-lti 7427  df-plpq 7464  df-mpq 7465  df-enq 7467  df-nqqs 7468  df-plqqs 7469  df-mqqs 7470  df-1nqqs 7471  df-rq 7472  df-ltnqqs 7473  df-enq0 7544  df-nq0 7545  df-0nq0 7546  df-plq0 7547  df-mq0 7548  df-inp 7586
This theorem is referenced by:  prmuloc2  7687  mullocpr  7691
  Copyright terms: Public domain W3C validator