| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant1l | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3adant1l.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant1l | ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adant1l.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1206 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | adantll 476 | . 2 ⊢ (((𝜏 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 4 | 3 | 3impb 1201 | 1 ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3adant2l 1234 3adant3l 1236 ad5ant245 1238 tfrcl 6422 addassnqg 7449 mulassnqg 7451 addasssrg 7823 axaddass 7939 issubmnd 13083 opprringbg 13636 |
| Copyright terms: Public domain | W3C validator |