ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant1l GIF version

Theorem 3adant1l 1232
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant1l (((𝜏𝜑) ∧ 𝜓𝜒) → 𝜃)

Proof of Theorem 3adant1l
StepHypRef Expression
1 3adant1l.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213expb 1206 . . 3 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
32adantll 476 . 2 (((𝜏𝜑) ∧ (𝜓𝜒)) → 𝜃)
433impb 1201 1 (((𝜏𝜑) ∧ 𝜓𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3adant2l  1234  3adant3l  1236  ad5ant245  1238  tfrcl  6417  addassnqg  7442  mulassnqg  7444  addasssrg  7816  axaddass  7932  issubmnd  13023  opprringbg  13576
  Copyright terms: Public domain W3C validator