ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adantl2 GIF version

Theorem 3adantl2 1106
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3adantl.1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
3adantl2 (((𝜑𝜏𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adantl2
StepHypRef Expression
1 3simpb 947 . 2 ((𝜑𝜏𝜓) → (𝜑𝜓))
2 3adantl.1 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
31, 2sylan 279 1 (((𝜑𝜏𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 932
This theorem is referenced by:  3ad2antl1  1111  nnmord  6343  ltaprg  7328  lediv2a  8511  zdiv  8991  neiint  12096  cnpnei  12169
  Copyright terms: Public domain W3C validator