![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulgnn0subcl | GIF version |
Description: Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
mulgnnsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnnsubcl.t | ⊢ · = (.g‘𝐺) |
mulgnnsubcl.p | ⊢ + = (+g‘𝐺) |
mulgnnsubcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
mulgnnsubcl.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
mulgnnsubcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
mulgnn0subcl.z | ⊢ 0 = (0g‘𝐺) |
mulgnn0subcl.c | ⊢ (𝜑 → 0 ∈ 𝑆) |
Ref | Expression |
---|---|
mulgnn0subcl | ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgnnsubcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mulgnnsubcl.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
3 | mulgnnsubcl.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
4 | mulgnnsubcl.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
5 | mulgnnsubcl.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
6 | mulgnnsubcl.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) | |
7 | 1, 2, 3, 4, 5, 6 | mulgnnsubcl 13091 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
8 | 7 | 3expa 1205 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ) ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
9 | 8 | an32s 568 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆) |
10 | 9 | 3adantl2 1156 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆) |
11 | oveq1 5904 | . . . 4 ⊢ (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋)) | |
12 | 5 | 3ad2ant1 1020 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
13 | simp3 1001 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
14 | 12, 13 | sseldd 3171 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
15 | mulgnn0subcl.z | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
16 | 1, 15, 2 | mulg0 13082 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
17 | 14, 16 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (0 · 𝑋) = 0 ) |
18 | 11, 17 | sylan9eqr 2244 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = 0 ) |
19 | mulgnn0subcl.c | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝑆) | |
20 | 19 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 0 ∈ 𝑆) |
21 | 20 | adantr 276 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → 0 ∈ 𝑆) |
22 | 18, 21 | eqeltrd 2266 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → (𝑁 · 𝑋) ∈ 𝑆) |
23 | simp2 1000 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑁 ∈ ℕ0) | |
24 | elnn0 9209 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
25 | 23, 24 | sylib 122 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
26 | 10, 22, 25 | mpjaodan 799 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ⊆ wss 3144 ‘cfv 5235 (class class class)co 5897 0cc0 7842 ℕcn 8950 ℕ0cn0 9207 Basecbs 12515 +gcplusg 12592 0gc0g 12764 .gcmg 13076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-addcom 7942 ax-addass 7944 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-0id 7950 ax-rnegex 7951 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-ltadd 7958 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-recs 6331 df-frec 6417 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-inn 8951 df-2 9009 df-n0 9208 df-z 9285 df-uz 9560 df-seqfrec 10479 df-ndx 12518 df-slot 12519 df-base 12521 df-plusg 12605 df-0g 12766 df-minusg 12964 df-mulg 13077 |
This theorem is referenced by: mulgsubcl 13093 mulgnn0cl 13095 submmulgcl 13122 |
Copyright terms: Public domain | W3C validator |