ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgsubcl GIF version

Theorem mulgsubcl 13206
Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b 𝐵 = (Base‘𝐺)
mulgnnsubcl.t · = (.g𝐺)
mulgnnsubcl.p + = (+g𝐺)
mulgnnsubcl.g (𝜑𝐺𝑉)
mulgnnsubcl.s (𝜑𝑆𝐵)
mulgnnsubcl.c ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
mulgnn0subcl.z 0 = (0g𝐺)
mulgnn0subcl.c (𝜑0𝑆)
mulgsubcl.i 𝐼 = (invg𝐺)
mulgsubcl.c ((𝜑𝑥𝑆) → (𝐼𝑥) ∈ 𝑆)
Assertion
Ref Expression
mulgsubcl ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝐼   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦   𝑥, ·   𝑥,𝑋,𝑦
Allowed substitution hints:   · (𝑦)   𝐼(𝑦)   𝑉(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem mulgsubcl
StepHypRef Expression
1 mulgnnsubcl.b . . . . . 6 𝐵 = (Base‘𝐺)
2 mulgnnsubcl.t . . . . . 6 · = (.g𝐺)
3 mulgnnsubcl.p . . . . . 6 + = (+g𝐺)
4 mulgnnsubcl.g . . . . . 6 (𝜑𝐺𝑉)
5 mulgnnsubcl.s . . . . . 6 (𝜑𝑆𝐵)
6 mulgnnsubcl.c . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
7 mulgnn0subcl.z . . . . . 6 0 = (0g𝐺)
8 mulgnn0subcl.c . . . . . 6 (𝜑0𝑆)
91, 2, 3, 4, 5, 6, 7, 8mulgnn0subcl 13205 . . . . 5 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
1093expa 1205 . . . 4 (((𝜑𝑁 ∈ ℕ0) ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
1110an32s 568 . . 3 (((𝜑𝑋𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆)
12113adantl2 1156 . 2 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆)
13 simp2 1000 . . . . . . . . 9 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑁 ∈ ℤ)
1413adantr 276 . . . . . . . 8 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
1514zcnd 9440 . . . . . . 7 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
1615negnegd 8321 . . . . . 6 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → --𝑁 = 𝑁)
1716oveq1d 5933 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
18 id 19 . . . . . 6 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ)
1953ad2ant1 1020 . . . . . . 7 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑆𝐵)
20 simp3 1001 . . . . . . 7 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋𝑆)
2119, 20sseldd 3180 . . . . . 6 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋𝐵)
22 mulgsubcl.i . . . . . . 7 𝐼 = (invg𝐺)
231, 2, 22mulgnegnn 13202 . . . . . 6 ((-𝑁 ∈ ℕ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
2418, 21, 23syl2anr 290 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
2517, 24eqtr3d 2228 . . . 4 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
26 fveq2 5554 . . . . . 6 (𝑥 = (-𝑁 · 𝑋) → (𝐼𝑥) = (𝐼‘(-𝑁 · 𝑋)))
2726eleq1d 2262 . . . . 5 (𝑥 = (-𝑁 · 𝑋) → ((𝐼𝑥) ∈ 𝑆 ↔ (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆))
28 mulgsubcl.c . . . . . . . 8 ((𝜑𝑥𝑆) → (𝐼𝑥) ∈ 𝑆)
2928ralrimiva 2567 . . . . . . 7 (𝜑 → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
30293ad2ant1 1020 . . . . . 6 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
3130adantr 276 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
321, 2, 3, 4, 5, 6mulgnnsubcl 13204 . . . . . . . 8 ((𝜑 ∧ -𝑁 ∈ ℕ ∧ 𝑋𝑆) → (-𝑁 · 𝑋) ∈ 𝑆)
33323expa 1205 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ) ∧ 𝑋𝑆) → (-𝑁 · 𝑋) ∈ 𝑆)
3433an32s 568 . . . . . 6 (((𝜑𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆)
35343adantl2 1156 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆)
3627, 31, 35rspcdva 2869 . . . 4 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆)
3725, 36eqeltrd 2270 . . 3 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆)
3837adantrl 478 . 2 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑁 · 𝑋) ∈ 𝑆)
39 elznn0nn 9331 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4013, 39sylib 122 . 2 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4112, 38, 40mpjaodan 799 1 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2164  wral 2472  wss 3153  cfv 5254  (class class class)co 5918  cr 7871  -cneg 8191  cn 8982  0cn0 9240  cz 9317  Basecbs 12618  +gcplusg 12695  0gc0g 12867  invgcminusg 13073  .gcmg 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-minusg 13076  df-mulg 13190
This theorem is referenced by:  mulgcl  13209  subgmulgcl  13257
  Copyright terms: Public domain W3C validator