ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgsubcl GIF version

Theorem mulgsubcl 12856
Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b 𝐵 = (Base‘𝐺)
mulgnnsubcl.t · = (.g𝐺)
mulgnnsubcl.p + = (+g𝐺)
mulgnnsubcl.g (𝜑𝐺𝑉)
mulgnnsubcl.s (𝜑𝑆𝐵)
mulgnnsubcl.c ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
mulgnn0subcl.z 0 = (0g𝐺)
mulgnn0subcl.c (𝜑0𝑆)
mulgsubcl.i 𝐼 = (invg𝐺)
mulgsubcl.c ((𝜑𝑥𝑆) → (𝐼𝑥) ∈ 𝑆)
Assertion
Ref Expression
mulgsubcl ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝐼   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦   𝑥, ·   𝑥,𝑋,𝑦
Allowed substitution hints:   · (𝑦)   𝐼(𝑦)   𝑉(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem mulgsubcl
StepHypRef Expression
1 mulgnnsubcl.b . . . . . 6 𝐵 = (Base‘𝐺)
2 mulgnnsubcl.t . . . . . 6 · = (.g𝐺)
3 mulgnnsubcl.p . . . . . 6 + = (+g𝐺)
4 mulgnnsubcl.g . . . . . 6 (𝜑𝐺𝑉)
5 mulgnnsubcl.s . . . . . 6 (𝜑𝑆𝐵)
6 mulgnnsubcl.c . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
7 mulgnn0subcl.z . . . . . 6 0 = (0g𝐺)
8 mulgnn0subcl.c . . . . . 6 (𝜑0𝑆)
91, 2, 3, 4, 5, 6, 7, 8mulgnn0subcl 12855 . . . . 5 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
1093expa 1203 . . . 4 (((𝜑𝑁 ∈ ℕ0) ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
1110an32s 568 . . 3 (((𝜑𝑋𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆)
12113adantl2 1154 . 2 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆)
13 simp2 998 . . . . . . . . 9 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑁 ∈ ℤ)
1413adantr 276 . . . . . . . 8 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
1514zcnd 9347 . . . . . . 7 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
1615negnegd 8233 . . . . . 6 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → --𝑁 = 𝑁)
1716oveq1d 5880 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
18 id 19 . . . . . 6 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ)
1953ad2ant1 1018 . . . . . . 7 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑆𝐵)
20 simp3 999 . . . . . . 7 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋𝑆)
2119, 20sseldd 3154 . . . . . 6 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋𝐵)
22 mulgsubcl.i . . . . . . 7 𝐼 = (invg𝐺)
231, 2, 22mulgnegnn 12852 . . . . . 6 ((-𝑁 ∈ ℕ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
2418, 21, 23syl2anr 290 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
2517, 24eqtr3d 2210 . . . 4 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
26 fveq2 5507 . . . . . 6 (𝑥 = (-𝑁 · 𝑋) → (𝐼𝑥) = (𝐼‘(-𝑁 · 𝑋)))
2726eleq1d 2244 . . . . 5 (𝑥 = (-𝑁 · 𝑋) → ((𝐼𝑥) ∈ 𝑆 ↔ (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆))
28 mulgsubcl.c . . . . . . . 8 ((𝜑𝑥𝑆) → (𝐼𝑥) ∈ 𝑆)
2928ralrimiva 2548 . . . . . . 7 (𝜑 → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
30293ad2ant1 1018 . . . . . 6 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
3130adantr 276 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
321, 2, 3, 4, 5, 6mulgnnsubcl 12854 . . . . . . . 8 ((𝜑 ∧ -𝑁 ∈ ℕ ∧ 𝑋𝑆) → (-𝑁 · 𝑋) ∈ 𝑆)
33323expa 1203 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ) ∧ 𝑋𝑆) → (-𝑁 · 𝑋) ∈ 𝑆)
3433an32s 568 . . . . . 6 (((𝜑𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆)
35343adantl2 1154 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆)
3627, 31, 35rspcdva 2844 . . . 4 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆)
3725, 36eqeltrd 2252 . . 3 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆)
3837adantrl 478 . 2 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑁 · 𝑋) ∈ 𝑆)
39 elznn0nn 9238 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4013, 39sylib 122 . 2 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4112, 38, 40mpjaodan 798 1 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708  w3a 978   = wceq 1353  wcel 2146  wral 2453  wss 3127  cfv 5208  (class class class)co 5865  cr 7785  -cneg 8103  cn 8890  0cn0 9147  cz 9224  Basecbs 12428  +gcplusg 12492  0gc0g 12626  invgcminusg 12739  .gcmg 12842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8891  df-2 8949  df-n0 9148  df-z 9225  df-uz 9500  df-seqfrec 10414  df-ndx 12431  df-slot 12432  df-base 12434  df-plusg 12505  df-0g 12628  df-minusg 12742  df-mulg 12843
This theorem is referenced by:  mulgcl  12859
  Copyright terms: Public domain W3C validator