Proof of Theorem nnmord
| Step | Hyp | Ref
| Expression |
| 1 | | nnmordi 6574 |
. . . . . 6
⊢ (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐴 ∈ 𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 2 | 1 | ex 115 |
. . . . 5
⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅
∈ 𝐶 → (𝐴 ∈ 𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))) |
| 3 | 2 | com23 78 |
. . . 4
⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ 𝐵 → (∅ ∈ 𝐶 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))) |
| 4 | 3 | impd 254 |
. . 3
⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 5 | 4 | 3adant1 1017 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 6 | | ne0i 3457 |
. . . . . . . 8
⊢ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → (𝐶 ·o 𝐵) ≠ ∅) |
| 7 | | nnm0r 6537 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ω → (∅
·o 𝐵) =
∅) |
| 8 | | oveq1 5929 |
. . . . . . . . . . 11
⊢ (𝐶 = ∅ → (𝐶 ·o 𝐵) = (∅
·o 𝐵)) |
| 9 | 8 | eqeq1d 2205 |
. . . . . . . . . 10
⊢ (𝐶 = ∅ → ((𝐶 ·o 𝐵) = ∅ ↔ (∅
·o 𝐵) =
∅)) |
| 10 | 7, 9 | syl5ibrcom 157 |
. . . . . . . . 9
⊢ (𝐵 ∈ ω → (𝐶 = ∅ → (𝐶 ·o 𝐵) = ∅)) |
| 11 | 10 | necon3d 2411 |
. . . . . . . 8
⊢ (𝐵 ∈ ω → ((𝐶 ·o 𝐵) ≠ ∅ → 𝐶 ≠ ∅)) |
| 12 | 6, 11 | syl5 32 |
. . . . . . 7
⊢ (𝐵 ∈ ω → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐶 ≠ ∅)) |
| 13 | 12 | adantr 276 |
. . . . . 6
⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐶 ≠ ∅)) |
| 14 | | nn0eln0 4656 |
. . . . . . 7
⊢ (𝐶 ∈ ω → (∅
∈ 𝐶 ↔ 𝐶 ≠ ∅)) |
| 15 | 14 | adantl 277 |
. . . . . 6
⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅
∈ 𝐶 ↔ 𝐶 ≠ ∅)) |
| 16 | 13, 15 | sylibrd 169 |
. . . . 5
⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → ∅ ∈ 𝐶)) |
| 17 | 16 | 3adant1 1017 |
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → ∅ ∈ 𝐶)) |
| 18 | | oveq2 5930 |
. . . . . . . . . 10
⊢ (𝐴 = 𝐵 → (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵)) |
| 19 | 18 | a1i 9 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐴 = 𝐵 → (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵))) |
| 20 | | nnmordi 6574 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐵 ∈ 𝐴 → (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴))) |
| 21 | 20 | 3adantl2 1156 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐵 ∈ 𝐴 → (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴))) |
| 22 | 19, 21 | orim12d 787 |
. . . . . . . 8
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → ((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))) |
| 23 | 22 | con3d 632 |
. . . . . . 7
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (¬
((𝐶 ·o
𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)) → ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 24 | | simpl3 1004 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → 𝐶 ∈
ω) |
| 25 | | simpl1 1002 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → 𝐴 ∈
ω) |
| 26 | | nnmcl 6539 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 ·o 𝐴) ∈
ω) |
| 27 | 24, 25, 26 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐶 ·o 𝐴) ∈
ω) |
| 28 | | simpl2 1003 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → 𝐵 ∈
ω) |
| 29 | | nnmcl 6539 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ·o 𝐵) ∈
ω) |
| 30 | 24, 28, 29 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐶 ·o 𝐵) ∈
ω) |
| 31 | | nntri2 6552 |
. . . . . . . 8
⊢ (((𝐶 ·o 𝐴) ∈ ω ∧ (𝐶 ·o 𝐵) ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ↔ ¬ ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))) |
| 32 | 27, 30, 31 | syl2anc 411 |
. . . . . . 7
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ↔ ¬ ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))) |
| 33 | | nntri2 6552 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 34 | 25, 28, 33 | syl2anc 411 |
. . . . . . 7
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 35 | 23, 32, 34 | 3imtr4d 203 |
. . . . . 6
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐴 ∈ 𝐵)) |
| 36 | 35 | ex 115 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅
∈ 𝐶 → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐴 ∈ 𝐵))) |
| 37 | 36 | com23 78 |
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → (∅ ∈ 𝐶 → 𝐴 ∈ 𝐵))) |
| 38 | 17, 37 | mpdd 41 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐴 ∈ 𝐵)) |
| 39 | 38, 17 | jcad 307 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → (𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶))) |
| 40 | 5, 39 | impbid 129 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |