ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpb GIF version

Theorem 3simpb 995
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3simpb ((𝜑𝜓𝜒) → (𝜑𝜒))

Proof of Theorem 3simpb
StepHypRef Expression
1 3ancomb 986 . 2 ((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))
2 3simpa 994 . 2 ((𝜑𝜒𝜓) → (𝜑𝜒))
31, 2sylbi 121 1 ((𝜑𝜓𝜒) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  3adant2  1016  3adantl2  1154  3adantr2  1157  enq0tr  7433  ixxssixx  9902  rebtwn2zlemshrink  10254  zsumdc  11392  muldvds1  11823  dvds2add  11832  dvds2sub  11833  dvdstr  11835  pw2dvdslemn  12165  ctinf  12431  mndissubm  12866
  Copyright terms: Public domain W3C validator