ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpb GIF version

Theorem 3simpb 998
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3simpb ((𝜑𝜓𝜒) → (𝜑𝜒))

Proof of Theorem 3simpb
StepHypRef Expression
1 3ancomb 989 . 2 ((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))
2 3simpa 997 . 2 ((𝜑𝜒𝜓) → (𝜑𝜒))
31, 2sylbi 121 1 ((𝜑𝜓𝜒) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  3adant2  1019  3adantl2  1157  3adantr2  1160  enq0tr  7560  ixxssixx  10037  rebtwn2zlemshrink  10409  zsumdc  11745  muldvds1  12177  dvds2add  12186  dvds2sub  12187  dvdstr  12189  pw2dvdslemn  12537  ctinf  12851  mndissubm  13357  gsumfzconst  13727
  Copyright terms: Public domain W3C validator