Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3simpb | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancomb 976 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) | |
2 | 3simpa 984 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → (𝜑 ∧ 𝜒)) | |
3 | 1, 2 | sylbi 120 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: 3adant2 1006 3adantl2 1144 3adantr2 1147 enq0tr 7375 ixxssixx 9838 rebtwn2zlemshrink 10189 zsumdc 11325 muldvds1 11756 dvds2add 11765 dvds2sub 11766 dvdstr 11768 pw2dvdslemn 12097 ctinf 12363 |
Copyright terms: Public domain | W3C validator |