ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpb GIF version

Theorem 3simpb 997
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3simpb ((𝜑𝜓𝜒) → (𝜑𝜒))

Proof of Theorem 3simpb
StepHypRef Expression
1 3ancomb 988 . 2 ((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))
2 3simpa 996 . 2 ((𝜑𝜒𝜓) → (𝜑𝜒))
31, 2sylbi 121 1 ((𝜑𝜓𝜒) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3adant2  1018  3adantl2  1156  3adantr2  1159  enq0tr  7501  ixxssixx  9977  rebtwn2zlemshrink  10343  zsumdc  11549  muldvds1  11981  dvds2add  11990  dvds2sub  11991  dvdstr  11993  pw2dvdslemn  12333  ctinf  12647  mndissubm  13107  gsumfzconst  13471
  Copyright terms: Public domain W3C validator