ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpb GIF version

Theorem 3simpb 1019
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3simpb ((𝜑𝜓𝜒) → (𝜑𝜒))

Proof of Theorem 3simpb
StepHypRef Expression
1 3ancomb 1010 . 2 ((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))
2 3simpa 1018 . 2 ((𝜑𝜒𝜓) → (𝜑𝜒))
31, 2sylbi 121 1 ((𝜑𝜓𝜒) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  3adant2  1040  3adantl2  1178  3adantr2  1181  enq0tr  7609  ixxssixx  10086  rebtwn2zlemshrink  10460  zsumdc  11881  muldvds1  12313  dvds2add  12322  dvds2sub  12323  dvdstr  12325  pw2dvdslemn  12673  ctinf  12987  mndissubm  13494  gsumfzconst  13864
  Copyright terms: Public domain W3C validator