![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3simpb | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancomb 987 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) | |
2 | 3simpa 995 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → (𝜑 ∧ 𝜒)) | |
3 | 1, 2 | sylbi 121 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 981 |
This theorem is referenced by: 3adant2 1017 3adantl2 1155 3adantr2 1158 enq0tr 7447 ixxssixx 9916 rebtwn2zlemshrink 10268 zsumdc 11406 muldvds1 11837 dvds2add 11846 dvds2sub 11847 dvdstr 11849 pw2dvdslemn 12179 ctinf 12445 mndissubm 12888 |
Copyright terms: Public domain | W3C validator |