| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3simpb | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancomb 988 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) | |
| 2 | 3simpa 996 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → (𝜑 ∧ 𝜒)) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3adant2 1018 3adantl2 1156 3adantr2 1159 enq0tr 7501 ixxssixx 9977 rebtwn2zlemshrink 10343 zsumdc 11549 muldvds1 11981 dvds2add 11990 dvds2sub 11991 dvdstr 11993 pw2dvdslemn 12333 ctinf 12647 mndissubm 13107 gsumfzconst 13471 |
| Copyright terms: Public domain | W3C validator |