ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpnei GIF version

Theorem cnpnei 12972
Description: A condition for continuity at a point in terms of neighborhoods. (Contributed by Jeff Hankins, 7-Sep-2009.)
Hypotheses
Ref Expression
cnpnei.1 𝑋 = 𝐽
cnpnei.2 𝑌 = 𝐾
Assertion
Ref Expression
cnpnei (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐽   𝑦,𝐾   𝑦,𝑋   𝑦,𝑌

Proof of Theorem cnpnei
Dummy variables 𝑔 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 4972 . . . . . . . 8 (𝐹𝑦) ⊆ dom 𝐹
2 fdm 5351 . . . . . . . 8 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
31, 2sseqtrid 3197 . . . . . . 7 (𝐹:𝑋𝑌 → (𝐹𝑦) ⊆ 𝑋)
433ad2ant3 1015 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝐹𝑦) ⊆ 𝑋)
54ad2antrr 485 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → (𝐹𝑦) ⊆ 𝑋)
6 neii2 12902 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})) → ∃𝑔𝐾 ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))
763ad2antl2 1155 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})) → ∃𝑔𝐾 ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))
87ad2ant2rl 508 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → ∃𝑔𝐾 ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))
9 cnpnei.1 . . . . . . . . . . . 12 𝑋 = 𝐽
109toptopon 12769 . . . . . . . . . . 11 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
1110biimpi 119 . . . . . . . . . 10 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝑋))
12113ad2ant1 1013 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ (TopOn‘𝑋))
1312ad3antrrr 489 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝐽 ∈ (TopOn‘𝑋))
14 cnpnei.2 . . . . . . . . . . . 12 𝑌 = 𝐾
1514toptopon 12769 . . . . . . . . . . 11 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
1615biimpi 119 . . . . . . . . . 10 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝑌))
17163ad2ant2 1014 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → 𝐾 ∈ (TopOn‘𝑌))
1817ad3antrrr 489 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝐾 ∈ (TopOn‘𝑌))
19 simpllr 529 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝐴𝑋)
20 simplrl 530 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
21 simprl 526 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝑔𝐾)
22 simprrl 534 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → {(𝐹𝐴)} ⊆ 𝑔)
23 fvexg 5513 . . . . . . . . . . 11 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ V)
2420, 19, 23syl2anc 409 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → (𝐹𝐴) ∈ V)
25 snssg 3714 . . . . . . . . . 10 ((𝐹𝐴) ∈ V → ((𝐹𝐴) ∈ 𝑔 ↔ {(𝐹𝐴)} ⊆ 𝑔))
2624, 25syl 14 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → ((𝐹𝐴) ∈ 𝑔 ↔ {(𝐹𝐴)} ⊆ 𝑔))
2722, 26mpbird 166 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → (𝐹𝐴) ∈ 𝑔)
28 icnpimaex 12964 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑔𝐾 ∧ (𝐹𝐴) ∈ 𝑔)) → ∃𝑜𝐽 (𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔))
2913, 18, 19, 20, 21, 27, 28syl33anc 1248 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → ∃𝑜𝐽 (𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔))
30 sstr2 3154 . . . . . . . . . . . . 13 ((𝐹𝑜) ⊆ 𝑔 → (𝑔𝑦 → (𝐹𝑜) ⊆ 𝑦))
3130com12 30 . . . . . . . . . . . 12 (𝑔𝑦 → ((𝐹𝑜) ⊆ 𝑔 → (𝐹𝑜) ⊆ 𝑦))
3231ad2antll 488 . . . . . . . . . . 11 ((𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦)) → ((𝐹𝑜) ⊆ 𝑔 → (𝐹𝑜) ⊆ 𝑦))
3332ad2antlr 486 . . . . . . . . . 10 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐹𝑜) ⊆ 𝑔 → (𝐹𝑜) ⊆ 𝑦))
34 ffun 5348 . . . . . . . . . . . . . 14 (𝐹:𝑋𝑌 → Fun 𝐹)
35343ad2ant3 1015 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → Fun 𝐹)
3635ad2antrr 485 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → Fun 𝐹)
3736ad2antrr 485 . . . . . . . . . . 11 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → Fun 𝐹)
389eltopss 12760 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜𝑋)
3938adantlr 474 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → 𝑜𝑋)
402sseq2d 3177 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋𝑌 → (𝑜 ⊆ dom 𝐹𝑜𝑋))
4140ad2antlr 486 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → (𝑜 ⊆ dom 𝐹𝑜𝑋))
4239, 41mpbird 166 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
43423adantl2 1149 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
4443adantlr 474 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
4544adantlr 474 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
4645adantlr 474 . . . . . . . . . . 11 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
47 funimass3 5609 . . . . . . . . . . 11 ((Fun 𝐹𝑜 ⊆ dom 𝐹) → ((𝐹𝑜) ⊆ 𝑦𝑜 ⊆ (𝐹𝑦)))
4837, 46, 47syl2anc 409 . . . . . . . . . 10 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐹𝑜) ⊆ 𝑦𝑜 ⊆ (𝐹𝑦)))
4933, 48sylibd 148 . . . . . . . . 9 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐹𝑜) ⊆ 𝑔𝑜 ⊆ (𝐹𝑦)))
5049anim2d 335 . . . . . . . 8 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔) → (𝐴𝑜𝑜 ⊆ (𝐹𝑦))))
5150reximdva 2572 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → (∃𝑜𝐽 (𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔) → ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦))))
5229, 51mpd 13 . . . . . 6 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))
538, 52rexlimddv 2592 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))
549isneip 12899 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((𝐹𝑦) ⊆ 𝑋 ∧ ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))))
55543ad2antl1 1154 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((𝐹𝑦) ⊆ 𝑋 ∧ ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))))
5655adantr 274 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((𝐹𝑦) ⊆ 𝑋 ∧ ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))))
575, 53, 56mpbir2and 939 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → (𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}))
5857exp32 363 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}) → (𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}))))
5958ralrimdv 2549 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})))
60 simpll3 1033 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹:𝑋𝑌)
61 opnneip 12912 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ 𝑜𝐾 ∧ (𝐹𝐴) ∈ 𝑜) → 𝑜 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))
62 imaeq2 4947 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑜 → (𝐹𝑦) = (𝐹𝑜))
6362eleq1d 2239 . . . . . . . . . . . . . . 15 (𝑦 = 𝑜 → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
6463rspcv 2830 . . . . . . . . . . . . . 14 (𝑜 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
6561, 64syl 14 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑜𝐾 ∧ (𝐹𝐴) ∈ 𝑜) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
66653com23 1204 . . . . . . . . . . . 12 ((𝐾 ∈ Top ∧ (𝐹𝐴) ∈ 𝑜𝑜𝐾) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
67663expb 1199 . . . . . . . . . . 11 ((𝐾 ∈ Top ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
68673ad2antl2 1155 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
6968adantlr 474 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
70 neii2 12902 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜)))
7170ex 114 . . . . . . . . . . 11 (𝐽 ∈ Top → ((𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
72713ad2ant1 1013 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → ((𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
7372ad2antrr 485 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → ((𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
74 snssg 3714 . . . . . . . . . . . . 13 (𝐴𝑋 → (𝐴𝑔 ↔ {𝐴} ⊆ 𝑔))
7574ad3antlr 490 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → (𝐴𝑔 ↔ {𝐴} ⊆ 𝑔))
7635ad3antrrr 489 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → Fun 𝐹)
779eltopss 12760 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑔𝐽) → 𝑔𝑋)
78773ad2antl1 1154 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑔𝐽) → 𝑔𝑋)
792sseq2d 3177 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑋𝑌 → (𝑔 ⊆ dom 𝐹𝑔𝑋))
80793ad2ant3 1015 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝑔 ⊆ dom 𝐹𝑔𝑋))
8180biimpar 295 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑔𝑋) → 𝑔 ⊆ dom 𝐹)
8278, 81syldan 280 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑔𝐽) → 𝑔 ⊆ dom 𝐹)
8382adantlr 474 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ 𝑔𝐽) → 𝑔 ⊆ dom 𝐹)
8483adantlr 474 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → 𝑔 ⊆ dom 𝐹)
85 funimass3 5609 . . . . . . . . . . . . 13 ((Fun 𝐹𝑔 ⊆ dom 𝐹) → ((𝐹𝑔) ⊆ 𝑜𝑔 ⊆ (𝐹𝑜)))
8676, 84, 85syl2anc 409 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → ((𝐹𝑔) ⊆ 𝑜𝑔 ⊆ (𝐹𝑜)))
8775, 86anbi12d 470 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → ((𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜) ↔ ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
8887biimprd 157 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → (({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜)) → (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
8988reximdva 2572 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜)) → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
9069, 73, 893syld 57 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
9190exp32 363 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ 𝑜 → (𝑜𝐾 → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
9291com24 87 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝑜𝐾 → ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
9392imp 123 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → (𝑜𝐾 → ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜))))
9493ralrimiv 2542 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
95113ad2ant1 1013 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
96163ad2ant2 1014 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) → 𝐾 ∈ (TopOn‘𝑌))
97 simp3 994 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) → 𝐴𝑋)
98 iscnp 12952 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
9995, 96, 97, 98syl3anc 1233 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
100993expa 1198 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
1011003adantl3 1150 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
102101adantr 274 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
10360, 94, 102mpbir2and 939 . . 3 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
104103ex 114 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)))
10559, 104impbid 128 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wral 2448  wrex 2449  Vcvv 2730  wss 3121  {csn 3581   cuni 3794  ccnv 4608  dom cdm 4609  cima 4612  Fun wfun 5190  wf 5192  cfv 5196  (class class class)co 5850  Topctop 12748  TopOnctopon 12761  neicnei 12891   CnP ccnp 12939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-map 6624  df-top 12749  df-topon 12762  df-nei 12892  df-cnp 12942
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator