ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpnei GIF version

Theorem cnpnei 14398
Description: A condition for continuity at a point in terms of neighborhoods. (Contributed by Jeff Hankins, 7-Sep-2009.)
Hypotheses
Ref Expression
cnpnei.1 𝑋 = 𝐽
cnpnei.2 𝑌 = 𝐾
Assertion
Ref Expression
cnpnei (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐽   𝑦,𝐾   𝑦,𝑋   𝑦,𝑌

Proof of Theorem cnpnei
Dummy variables 𝑔 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5029 . . . . . . . 8 (𝐹𝑦) ⊆ dom 𝐹
2 fdm 5410 . . . . . . . 8 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
31, 2sseqtrid 3230 . . . . . . 7 (𝐹:𝑋𝑌 → (𝐹𝑦) ⊆ 𝑋)
433ad2ant3 1022 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝐹𝑦) ⊆ 𝑋)
54ad2antrr 488 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → (𝐹𝑦) ⊆ 𝑋)
6 neii2 14328 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})) → ∃𝑔𝐾 ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))
763ad2antl2 1162 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})) → ∃𝑔𝐾 ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))
87ad2ant2rl 511 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → ∃𝑔𝐾 ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))
9 cnpnei.1 . . . . . . . . . . . 12 𝑋 = 𝐽
109toptopon 14197 . . . . . . . . . . 11 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
1110biimpi 120 . . . . . . . . . 10 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝑋))
12113ad2ant1 1020 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ (TopOn‘𝑋))
1312ad3antrrr 492 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝐽 ∈ (TopOn‘𝑋))
14 cnpnei.2 . . . . . . . . . . . 12 𝑌 = 𝐾
1514toptopon 14197 . . . . . . . . . . 11 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
1615biimpi 120 . . . . . . . . . 10 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝑌))
17163ad2ant2 1021 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → 𝐾 ∈ (TopOn‘𝑌))
1817ad3antrrr 492 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝐾 ∈ (TopOn‘𝑌))
19 simpllr 534 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝐴𝑋)
20 simplrl 535 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
21 simprl 529 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝑔𝐾)
22 simprrl 539 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → {(𝐹𝐴)} ⊆ 𝑔)
23 fvexg 5574 . . . . . . . . . . 11 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ V)
2420, 19, 23syl2anc 411 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → (𝐹𝐴) ∈ V)
25 snssg 3753 . . . . . . . . . 10 ((𝐹𝐴) ∈ V → ((𝐹𝐴) ∈ 𝑔 ↔ {(𝐹𝐴)} ⊆ 𝑔))
2624, 25syl 14 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → ((𝐹𝐴) ∈ 𝑔 ↔ {(𝐹𝐴)} ⊆ 𝑔))
2722, 26mpbird 167 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → (𝐹𝐴) ∈ 𝑔)
28 icnpimaex 14390 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑔𝐾 ∧ (𝐹𝐴) ∈ 𝑔)) → ∃𝑜𝐽 (𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔))
2913, 18, 19, 20, 21, 27, 28syl33anc 1264 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → ∃𝑜𝐽 (𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔))
30 sstr2 3187 . . . . . . . . . . . . 13 ((𝐹𝑜) ⊆ 𝑔 → (𝑔𝑦 → (𝐹𝑜) ⊆ 𝑦))
3130com12 30 . . . . . . . . . . . 12 (𝑔𝑦 → ((𝐹𝑜) ⊆ 𝑔 → (𝐹𝑜) ⊆ 𝑦))
3231ad2antll 491 . . . . . . . . . . 11 ((𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦)) → ((𝐹𝑜) ⊆ 𝑔 → (𝐹𝑜) ⊆ 𝑦))
3332ad2antlr 489 . . . . . . . . . 10 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐹𝑜) ⊆ 𝑔 → (𝐹𝑜) ⊆ 𝑦))
34 ffun 5407 . . . . . . . . . . . . . 14 (𝐹:𝑋𝑌 → Fun 𝐹)
35343ad2ant3 1022 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → Fun 𝐹)
3635ad2antrr 488 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → Fun 𝐹)
3736ad2antrr 488 . . . . . . . . . . 11 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → Fun 𝐹)
389eltopss 14188 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜𝑋)
3938adantlr 477 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → 𝑜𝑋)
402sseq2d 3210 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋𝑌 → (𝑜 ⊆ dom 𝐹𝑜𝑋))
4140ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → (𝑜 ⊆ dom 𝐹𝑜𝑋))
4239, 41mpbird 167 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
43423adantl2 1156 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
4443adantlr 477 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
4544adantlr 477 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
4645adantlr 477 . . . . . . . . . . 11 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
47 funimass3 5675 . . . . . . . . . . 11 ((Fun 𝐹𝑜 ⊆ dom 𝐹) → ((𝐹𝑜) ⊆ 𝑦𝑜 ⊆ (𝐹𝑦)))
4837, 46, 47syl2anc 411 . . . . . . . . . 10 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐹𝑜) ⊆ 𝑦𝑜 ⊆ (𝐹𝑦)))
4933, 48sylibd 149 . . . . . . . . 9 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐹𝑜) ⊆ 𝑔𝑜 ⊆ (𝐹𝑦)))
5049anim2d 337 . . . . . . . 8 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔) → (𝐴𝑜𝑜 ⊆ (𝐹𝑦))))
5150reximdva 2596 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → (∃𝑜𝐽 (𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔) → ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦))))
5229, 51mpd 13 . . . . . 6 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))
538, 52rexlimddv 2616 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))
549isneip 14325 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((𝐹𝑦) ⊆ 𝑋 ∧ ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))))
55543ad2antl1 1161 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((𝐹𝑦) ⊆ 𝑋 ∧ ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))))
5655adantr 276 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((𝐹𝑦) ⊆ 𝑋 ∧ ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))))
575, 53, 56mpbir2and 946 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → (𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}))
5857exp32 365 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}) → (𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}))))
5958ralrimdv 2573 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})))
60 simpll3 1040 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹:𝑋𝑌)
61 opnneip 14338 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ 𝑜𝐾 ∧ (𝐹𝐴) ∈ 𝑜) → 𝑜 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))
62 imaeq2 5002 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑜 → (𝐹𝑦) = (𝐹𝑜))
6362eleq1d 2262 . . . . . . . . . . . . . . 15 (𝑦 = 𝑜 → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
6463rspcv 2861 . . . . . . . . . . . . . 14 (𝑜 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
6561, 64syl 14 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑜𝐾 ∧ (𝐹𝐴) ∈ 𝑜) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
66653com23 1211 . . . . . . . . . . . 12 ((𝐾 ∈ Top ∧ (𝐹𝐴) ∈ 𝑜𝑜𝐾) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
67663expb 1206 . . . . . . . . . . 11 ((𝐾 ∈ Top ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
68673ad2antl2 1162 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
6968adantlr 477 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
70 neii2 14328 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜)))
7170ex 115 . . . . . . . . . . 11 (𝐽 ∈ Top → ((𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
72713ad2ant1 1020 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → ((𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
7372ad2antrr 488 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → ((𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
74 snssg 3753 . . . . . . . . . . . . 13 (𝐴𝑋 → (𝐴𝑔 ↔ {𝐴} ⊆ 𝑔))
7574ad3antlr 493 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → (𝐴𝑔 ↔ {𝐴} ⊆ 𝑔))
7635ad3antrrr 492 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → Fun 𝐹)
779eltopss 14188 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑔𝐽) → 𝑔𝑋)
78773ad2antl1 1161 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑔𝐽) → 𝑔𝑋)
792sseq2d 3210 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑋𝑌 → (𝑔 ⊆ dom 𝐹𝑔𝑋))
80793ad2ant3 1022 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝑔 ⊆ dom 𝐹𝑔𝑋))
8180biimpar 297 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑔𝑋) → 𝑔 ⊆ dom 𝐹)
8278, 81syldan 282 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑔𝐽) → 𝑔 ⊆ dom 𝐹)
8382adantlr 477 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ 𝑔𝐽) → 𝑔 ⊆ dom 𝐹)
8483adantlr 477 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → 𝑔 ⊆ dom 𝐹)
85 funimass3 5675 . . . . . . . . . . . . 13 ((Fun 𝐹𝑔 ⊆ dom 𝐹) → ((𝐹𝑔) ⊆ 𝑜𝑔 ⊆ (𝐹𝑜)))
8676, 84, 85syl2anc 411 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → ((𝐹𝑔) ⊆ 𝑜𝑔 ⊆ (𝐹𝑜)))
8775, 86anbi12d 473 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → ((𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜) ↔ ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
8887biimprd 158 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → (({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜)) → (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
8988reximdva 2596 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜)) → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
9069, 73, 893syld 57 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
9190exp32 365 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ 𝑜 → (𝑜𝐾 → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
9291com24 87 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝑜𝐾 → ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
9392imp 124 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → (𝑜𝐾 → ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜))))
9493ralrimiv 2566 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
95113ad2ant1 1020 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
96163ad2ant2 1021 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) → 𝐾 ∈ (TopOn‘𝑌))
97 simp3 1001 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) → 𝐴𝑋)
98 iscnp 14378 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
9995, 96, 97, 98syl3anc 1249 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
100993expa 1205 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
1011003adantl3 1157 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
102101adantr 276 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
10360, 94, 102mpbir2and 946 . . 3 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
104103ex 115 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)))
10559, 104impbid 129 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wral 2472  wrex 2473  Vcvv 2760  wss 3154  {csn 3619   cuni 3836  ccnv 4659  dom cdm 4660  cima 4663  Fun wfun 5249  wf 5251  cfv 5255  (class class class)co 5919  Topctop 14176  TopOnctopon 14189  neicnei 14317   CnP ccnp 14365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-top 14177  df-topon 14190  df-nei 14318  df-cnp 14368
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator