ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpnei GIF version

Theorem cnpnei 12427
Description: A condition for continuity at a point in terms of neighborhoods. (Contributed by Jeff Hankins, 7-Sep-2009.)
Hypotheses
Ref Expression
cnpnei.1 𝑋 = 𝐽
cnpnei.2 𝑌 = 𝐾
Assertion
Ref Expression
cnpnei (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐽   𝑦,𝐾   𝑦,𝑋   𝑦,𝑌

Proof of Theorem cnpnei
Dummy variables 𝑔 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 4910 . . . . . . . 8 (𝐹𝑦) ⊆ dom 𝐹
2 fdm 5286 . . . . . . . 8 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
31, 2sseqtrid 3152 . . . . . . 7 (𝐹:𝑋𝑌 → (𝐹𝑦) ⊆ 𝑋)
433ad2ant3 1005 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝐹𝑦) ⊆ 𝑋)
54ad2antrr 480 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → (𝐹𝑦) ⊆ 𝑋)
6 neii2 12357 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})) → ∃𝑔𝐾 ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))
763ad2antl2 1145 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})) → ∃𝑔𝐾 ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))
87ad2ant2rl 503 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → ∃𝑔𝐾 ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))
9 cnpnei.1 . . . . . . . . . . . 12 𝑋 = 𝐽
109toptopon 12224 . . . . . . . . . . 11 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
1110biimpi 119 . . . . . . . . . 10 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝑋))
12113ad2ant1 1003 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ (TopOn‘𝑋))
1312ad3antrrr 484 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝐽 ∈ (TopOn‘𝑋))
14 cnpnei.2 . . . . . . . . . . . 12 𝑌 = 𝐾
1514toptopon 12224 . . . . . . . . . . 11 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
1615biimpi 119 . . . . . . . . . 10 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝑌))
17163ad2ant2 1004 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → 𝐾 ∈ (TopOn‘𝑌))
1817ad3antrrr 484 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝐾 ∈ (TopOn‘𝑌))
19 simpllr 524 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝐴𝑋)
20 simplrl 525 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
21 simprl 521 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝑔𝐾)
22 simprrl 529 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → {(𝐹𝐴)} ⊆ 𝑔)
23 fvexg 5448 . . . . . . . . . . 11 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ V)
2420, 19, 23syl2anc 409 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → (𝐹𝐴) ∈ V)
25 snssg 3664 . . . . . . . . . 10 ((𝐹𝐴) ∈ V → ((𝐹𝐴) ∈ 𝑔 ↔ {(𝐹𝐴)} ⊆ 𝑔))
2624, 25syl 14 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → ((𝐹𝐴) ∈ 𝑔 ↔ {(𝐹𝐴)} ⊆ 𝑔))
2722, 26mpbird 166 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → (𝐹𝐴) ∈ 𝑔)
28 icnpimaex 12419 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑔𝐾 ∧ (𝐹𝐴) ∈ 𝑔)) → ∃𝑜𝐽 (𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔))
2913, 18, 19, 20, 21, 27, 28syl33anc 1232 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → ∃𝑜𝐽 (𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔))
30 sstr2 3109 . . . . . . . . . . . . 13 ((𝐹𝑜) ⊆ 𝑔 → (𝑔𝑦 → (𝐹𝑜) ⊆ 𝑦))
3130com12 30 . . . . . . . . . . . 12 (𝑔𝑦 → ((𝐹𝑜) ⊆ 𝑔 → (𝐹𝑜) ⊆ 𝑦))
3231ad2antll 483 . . . . . . . . . . 11 ((𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦)) → ((𝐹𝑜) ⊆ 𝑔 → (𝐹𝑜) ⊆ 𝑦))
3332ad2antlr 481 . . . . . . . . . 10 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐹𝑜) ⊆ 𝑔 → (𝐹𝑜) ⊆ 𝑦))
34 ffun 5283 . . . . . . . . . . . . . 14 (𝐹:𝑋𝑌 → Fun 𝐹)
35343ad2ant3 1005 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → Fun 𝐹)
3635ad2antrr 480 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → Fun 𝐹)
3736ad2antrr 480 . . . . . . . . . . 11 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → Fun 𝐹)
389eltopss 12215 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜𝑋)
3938adantlr 469 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → 𝑜𝑋)
402sseq2d 3132 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋𝑌 → (𝑜 ⊆ dom 𝐹𝑜𝑋))
4140ad2antlr 481 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → (𝑜 ⊆ dom 𝐹𝑜𝑋))
4239, 41mpbird 166 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
43423adantl2 1139 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
4443adantlr 469 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
4544adantlr 469 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
4645adantlr 469 . . . . . . . . . . 11 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
47 funimass3 5544 . . . . . . . . . . 11 ((Fun 𝐹𝑜 ⊆ dom 𝐹) → ((𝐹𝑜) ⊆ 𝑦𝑜 ⊆ (𝐹𝑦)))
4837, 46, 47syl2anc 409 . . . . . . . . . 10 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐹𝑜) ⊆ 𝑦𝑜 ⊆ (𝐹𝑦)))
4933, 48sylibd 148 . . . . . . . . 9 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐹𝑜) ⊆ 𝑔𝑜 ⊆ (𝐹𝑦)))
5049anim2d 335 . . . . . . . 8 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔) → (𝐴𝑜𝑜 ⊆ (𝐹𝑦))))
5150reximdva 2537 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → (∃𝑜𝐽 (𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔) → ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦))))
5229, 51mpd 13 . . . . . 6 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))
538, 52rexlimddv 2557 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))
549isneip 12354 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((𝐹𝑦) ⊆ 𝑋 ∧ ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))))
55543ad2antl1 1144 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((𝐹𝑦) ⊆ 𝑋 ∧ ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))))
5655adantr 274 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((𝐹𝑦) ⊆ 𝑋 ∧ ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))))
575, 53, 56mpbir2and 929 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → (𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}))
5857exp32 363 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}) → (𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}))))
5958ralrimdv 2514 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})))
60 simpll3 1023 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹:𝑋𝑌)
61 opnneip 12367 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ 𝑜𝐾 ∧ (𝐹𝐴) ∈ 𝑜) → 𝑜 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))
62 imaeq2 4885 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑜 → (𝐹𝑦) = (𝐹𝑜))
6362eleq1d 2209 . . . . . . . . . . . . . . 15 (𝑦 = 𝑜 → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
6463rspcv 2789 . . . . . . . . . . . . . 14 (𝑜 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
6561, 64syl 14 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑜𝐾 ∧ (𝐹𝐴) ∈ 𝑜) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
66653com23 1188 . . . . . . . . . . . 12 ((𝐾 ∈ Top ∧ (𝐹𝐴) ∈ 𝑜𝑜𝐾) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
67663expb 1183 . . . . . . . . . . 11 ((𝐾 ∈ Top ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
68673ad2antl2 1145 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
6968adantlr 469 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
70 neii2 12357 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜)))
7170ex 114 . . . . . . . . . . 11 (𝐽 ∈ Top → ((𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
72713ad2ant1 1003 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → ((𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
7372ad2antrr 480 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → ((𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
74 snssg 3664 . . . . . . . . . . . . 13 (𝐴𝑋 → (𝐴𝑔 ↔ {𝐴} ⊆ 𝑔))
7574ad3antlr 485 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → (𝐴𝑔 ↔ {𝐴} ⊆ 𝑔))
7635ad3antrrr 484 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → Fun 𝐹)
779eltopss 12215 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑔𝐽) → 𝑔𝑋)
78773ad2antl1 1144 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑔𝐽) → 𝑔𝑋)
792sseq2d 3132 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑋𝑌 → (𝑔 ⊆ dom 𝐹𝑔𝑋))
80793ad2ant3 1005 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝑔 ⊆ dom 𝐹𝑔𝑋))
8180biimpar 295 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑔𝑋) → 𝑔 ⊆ dom 𝐹)
8278, 81syldan 280 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑔𝐽) → 𝑔 ⊆ dom 𝐹)
8382adantlr 469 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ 𝑔𝐽) → 𝑔 ⊆ dom 𝐹)
8483adantlr 469 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → 𝑔 ⊆ dom 𝐹)
85 funimass3 5544 . . . . . . . . . . . . 13 ((Fun 𝐹𝑔 ⊆ dom 𝐹) → ((𝐹𝑔) ⊆ 𝑜𝑔 ⊆ (𝐹𝑜)))
8676, 84, 85syl2anc 409 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → ((𝐹𝑔) ⊆ 𝑜𝑔 ⊆ (𝐹𝑜)))
8775, 86anbi12d 465 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → ((𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜) ↔ ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
8887biimprd 157 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → (({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜)) → (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
8988reximdva 2537 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜)) → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
9069, 73, 893syld 57 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
9190exp32 363 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ 𝑜 → (𝑜𝐾 → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
9291com24 87 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝑜𝐾 → ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
9392imp 123 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → (𝑜𝐾 → ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜))))
9493ralrimiv 2507 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
95113ad2ant1 1003 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
96163ad2ant2 1004 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) → 𝐾 ∈ (TopOn‘𝑌))
97 simp3 984 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) → 𝐴𝑋)
98 iscnp 12407 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
9995, 96, 97, 98syl3anc 1217 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
100993expa 1182 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
1011003adantl3 1140 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
102101adantr 274 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
10360, 94, 102mpbir2and 929 . . 3 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
104103ex 114 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)))
10559, 104impbid 128 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  wral 2417  wrex 2418  Vcvv 2689  wss 3076  {csn 3532   cuni 3744  ccnv 4546  dom cdm 4547  cima 4550  Fun wfun 5125  wf 5127  cfv 5131  (class class class)co 5782  Topctop 12203  TopOnctopon 12216  neicnei 12346   CnP ccnp 12394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-map 6552  df-top 12204  df-topon 12217  df-nei 12347  df-cnp 12397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator