ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpnei GIF version

Theorem cnpnei 14858
Description: A condition for continuity at a point in terms of neighborhoods. (Contributed by Jeff Hankins, 7-Sep-2009.)
Hypotheses
Ref Expression
cnpnei.1 𝑋 = 𝐽
cnpnei.2 𝑌 = 𝐾
Assertion
Ref Expression
cnpnei (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐽   𝑦,𝐾   𝑦,𝑋   𝑦,𝑌

Proof of Theorem cnpnei
Dummy variables 𝑔 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5067 . . . . . . . 8 (𝐹𝑦) ⊆ dom 𝐹
2 fdm 5455 . . . . . . . 8 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
31, 2sseqtrid 3254 . . . . . . 7 (𝐹:𝑋𝑌 → (𝐹𝑦) ⊆ 𝑋)
433ad2ant3 1025 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝐹𝑦) ⊆ 𝑋)
54ad2antrr 488 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → (𝐹𝑦) ⊆ 𝑋)
6 neii2 14788 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})) → ∃𝑔𝐾 ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))
763ad2antl2 1165 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})) → ∃𝑔𝐾 ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))
87ad2ant2rl 511 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → ∃𝑔𝐾 ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))
9 cnpnei.1 . . . . . . . . . . . 12 𝑋 = 𝐽
109toptopon 14657 . . . . . . . . . . 11 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
1110biimpi 120 . . . . . . . . . 10 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝑋))
12113ad2ant1 1023 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ (TopOn‘𝑋))
1312ad3antrrr 492 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝐽 ∈ (TopOn‘𝑋))
14 cnpnei.2 . . . . . . . . . . . 12 𝑌 = 𝐾
1514toptopon 14657 . . . . . . . . . . 11 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
1615biimpi 120 . . . . . . . . . 10 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝑌))
17163ad2ant2 1024 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → 𝐾 ∈ (TopOn‘𝑌))
1817ad3antrrr 492 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝐾 ∈ (TopOn‘𝑌))
19 simpllr 534 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝐴𝑋)
20 simplrl 535 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
21 simprl 529 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝑔𝐾)
22 simprrl 539 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → {(𝐹𝐴)} ⊆ 𝑔)
23 fvexg 5622 . . . . . . . . . . 11 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ V)
2420, 19, 23syl2anc 411 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → (𝐹𝐴) ∈ V)
25 snssg 3781 . . . . . . . . . 10 ((𝐹𝐴) ∈ V → ((𝐹𝐴) ∈ 𝑔 ↔ {(𝐹𝐴)} ⊆ 𝑔))
2624, 25syl 14 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → ((𝐹𝐴) ∈ 𝑔 ↔ {(𝐹𝐴)} ⊆ 𝑔))
2722, 26mpbird 167 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → (𝐹𝐴) ∈ 𝑔)
28 icnpimaex 14850 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑔𝐾 ∧ (𝐹𝐴) ∈ 𝑔)) → ∃𝑜𝐽 (𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔))
2913, 18, 19, 20, 21, 27, 28syl33anc 1267 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → ∃𝑜𝐽 (𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔))
30 sstr2 3211 . . . . . . . . . . . . 13 ((𝐹𝑜) ⊆ 𝑔 → (𝑔𝑦 → (𝐹𝑜) ⊆ 𝑦))
3130com12 30 . . . . . . . . . . . 12 (𝑔𝑦 → ((𝐹𝑜) ⊆ 𝑔 → (𝐹𝑜) ⊆ 𝑦))
3231ad2antll 491 . . . . . . . . . . 11 ((𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦)) → ((𝐹𝑜) ⊆ 𝑔 → (𝐹𝑜) ⊆ 𝑦))
3332ad2antlr 489 . . . . . . . . . 10 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐹𝑜) ⊆ 𝑔 → (𝐹𝑜) ⊆ 𝑦))
34 ffun 5452 . . . . . . . . . . . . . 14 (𝐹:𝑋𝑌 → Fun 𝐹)
35343ad2ant3 1025 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → Fun 𝐹)
3635ad2antrr 488 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → Fun 𝐹)
3736ad2antrr 488 . . . . . . . . . . 11 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → Fun 𝐹)
389eltopss 14648 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜𝑋)
3938adantlr 477 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → 𝑜𝑋)
402sseq2d 3234 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋𝑌 → (𝑜 ⊆ dom 𝐹𝑜𝑋))
4140ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → (𝑜 ⊆ dom 𝐹𝑜𝑋))
4239, 41mpbird 167 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
43423adantl2 1159 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
4443adantlr 477 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
4544adantlr 477 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
4645adantlr 477 . . . . . . . . . . 11 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
47 funimass3 5724 . . . . . . . . . . 11 ((Fun 𝐹𝑜 ⊆ dom 𝐹) → ((𝐹𝑜) ⊆ 𝑦𝑜 ⊆ (𝐹𝑦)))
4837, 46, 47syl2anc 411 . . . . . . . . . 10 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐹𝑜) ⊆ 𝑦𝑜 ⊆ (𝐹𝑦)))
4933, 48sylibd 149 . . . . . . . . 9 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐹𝑜) ⊆ 𝑔𝑜 ⊆ (𝐹𝑦)))
5049anim2d 337 . . . . . . . 8 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔) → (𝐴𝑜𝑜 ⊆ (𝐹𝑦))))
5150reximdva 2612 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → (∃𝑜𝐽 (𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔) → ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦))))
5229, 51mpd 13 . . . . . 6 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))
538, 52rexlimddv 2633 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))
549isneip 14785 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((𝐹𝑦) ⊆ 𝑋 ∧ ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))))
55543ad2antl1 1164 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((𝐹𝑦) ⊆ 𝑋 ∧ ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))))
5655adantr 276 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((𝐹𝑦) ⊆ 𝑋 ∧ ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))))
575, 53, 56mpbir2and 949 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → (𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}))
5857exp32 365 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}) → (𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}))))
5958ralrimdv 2589 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})))
60 simpll3 1043 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹:𝑋𝑌)
61 opnneip 14798 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ 𝑜𝐾 ∧ (𝐹𝐴) ∈ 𝑜) → 𝑜 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))
62 imaeq2 5040 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑜 → (𝐹𝑦) = (𝐹𝑜))
6362eleq1d 2278 . . . . . . . . . . . . . . 15 (𝑦 = 𝑜 → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
6463rspcv 2883 . . . . . . . . . . . . . 14 (𝑜 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
6561, 64syl 14 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑜𝐾 ∧ (𝐹𝐴) ∈ 𝑜) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
66653com23 1214 . . . . . . . . . . . 12 ((𝐾 ∈ Top ∧ (𝐹𝐴) ∈ 𝑜𝑜𝐾) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
67663expb 1209 . . . . . . . . . . 11 ((𝐾 ∈ Top ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
68673ad2antl2 1165 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
6968adantlr 477 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
70 neii2 14788 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜)))
7170ex 115 . . . . . . . . . . 11 (𝐽 ∈ Top → ((𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
72713ad2ant1 1023 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → ((𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
7372ad2antrr 488 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → ((𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
74 snssg 3781 . . . . . . . . . . . . 13 (𝐴𝑋 → (𝐴𝑔 ↔ {𝐴} ⊆ 𝑔))
7574ad3antlr 493 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → (𝐴𝑔 ↔ {𝐴} ⊆ 𝑔))
7635ad3antrrr 492 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → Fun 𝐹)
779eltopss 14648 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑔𝐽) → 𝑔𝑋)
78773ad2antl1 1164 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑔𝐽) → 𝑔𝑋)
792sseq2d 3234 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑋𝑌 → (𝑔 ⊆ dom 𝐹𝑔𝑋))
80793ad2ant3 1025 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝑔 ⊆ dom 𝐹𝑔𝑋))
8180biimpar 297 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑔𝑋) → 𝑔 ⊆ dom 𝐹)
8278, 81syldan 282 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑔𝐽) → 𝑔 ⊆ dom 𝐹)
8382adantlr 477 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ 𝑔𝐽) → 𝑔 ⊆ dom 𝐹)
8483adantlr 477 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → 𝑔 ⊆ dom 𝐹)
85 funimass3 5724 . . . . . . . . . . . . 13 ((Fun 𝐹𝑔 ⊆ dom 𝐹) → ((𝐹𝑔) ⊆ 𝑜𝑔 ⊆ (𝐹𝑜)))
8676, 84, 85syl2anc 411 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → ((𝐹𝑔) ⊆ 𝑜𝑔 ⊆ (𝐹𝑜)))
8775, 86anbi12d 473 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → ((𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜) ↔ ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
8887biimprd 158 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → (({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜)) → (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
8988reximdva 2612 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜)) → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
9069, 73, 893syld 57 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
9190exp32 365 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ 𝑜 → (𝑜𝐾 → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
9291com24 87 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝑜𝐾 → ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
9392imp 124 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → (𝑜𝐾 → ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜))))
9493ralrimiv 2582 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
95113ad2ant1 1023 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
96163ad2ant2 1024 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) → 𝐾 ∈ (TopOn‘𝑌))
97 simp3 1004 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) → 𝐴𝑋)
98 iscnp 14838 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
9995, 96, 97, 98syl3anc 1252 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
100993expa 1208 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
1011003adantl3 1160 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
102101adantr 276 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
10360, 94, 102mpbir2and 949 . . 3 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
104103ex 115 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)))
10559, 104impbid 129 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wcel 2180  wral 2488  wrex 2489  Vcvv 2779  wss 3177  {csn 3646   cuni 3867  ccnv 4695  dom cdm 4696  cima 4699  Fun wfun 5288  wf 5290  cfv 5294  (class class class)co 5974  Topctop 14636  TopOnctopon 14649  neicnei 14777   CnP ccnp 14825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-map 6767  df-top 14637  df-topon 14650  df-nei 14778  df-cnp 14828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator