ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaprg GIF version

Theorem ltaprg 7450
Description: Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by Jim Kingdon, 26-Dec-2019.)
Assertion
Ref Expression
ltaprg ((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Proof of Theorem ltaprg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltaprlem 7449 . . 3 (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
213ad2ant3 1005 . 2 ((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
3 ltexpri 7444 . . . . 5 ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → ∃𝑥P ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
43adantl 275 . . . 4 (((𝐴P𝐵P𝐶P) ∧ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) → ∃𝑥P ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
5 simpl1 985 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐴P)
6 simprl 521 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝑥P)
7 ltaddpr 7428 . . . . . . 7 ((𝐴P𝑥P) → 𝐴<P (𝐴 +P 𝑥))
85, 6, 7syl2anc 409 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐴<P (𝐴 +P 𝑥))
9 addassprg 7410 . . . . . . . . . . . 12 ((𝐶P𝐴P𝑥P) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
1093com12 1186 . . . . . . . . . . 11 ((𝐴P𝐶P𝑥P) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
11103expa 1182 . . . . . . . . . 10 (((𝐴P𝐶P) ∧ 𝑥P) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
1211adantrr 471 . . . . . . . . 9 (((𝐴P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
13 simprr 522 . . . . . . . . 9 (((𝐴P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
1412, 13eqtr3d 2175 . . . . . . . 8 (((𝐴P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵))
15143adantl2 1139 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵))
16 simpl3 987 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐶P)
17 addclpr 7368 . . . . . . . . 9 ((𝐴P𝑥P) → (𝐴 +P 𝑥) ∈ P)
185, 6, 17syl2anc 409 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → (𝐴 +P 𝑥) ∈ P)
19 simpl2 986 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐵P)
20 addcanprg 7447 . . . . . . . 8 ((𝐶P ∧ (𝐴 +P 𝑥) ∈ P𝐵P) → ((𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵) → (𝐴 +P 𝑥) = 𝐵))
2116, 18, 19, 20syl3anc 1217 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → ((𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵) → (𝐴 +P 𝑥) = 𝐵))
2215, 21mpd 13 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → (𝐴 +P 𝑥) = 𝐵)
238, 22breqtrd 3961 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐴<P 𝐵)
2423adantlr 469 . . . 4 ((((𝐴P𝐵P𝐶P) ∧ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐴<P 𝐵)
254, 24rexlimddv 2557 . . 3 (((𝐴P𝐵P𝐶P) ∧ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) → 𝐴<P 𝐵)
2625ex 114 . 2 ((𝐴P𝐵P𝐶P) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵))
272, 26impbid 128 1 ((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  wrex 2418   class class class wbr 3936  (class class class)co 5781  Pcnp 7122   +P cpp 7124  <P cltp 7126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-eprel 4218  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-irdg 6274  df-1o 6320  df-2o 6321  df-oadd 6324  df-omul 6325  df-er 6436  df-ec 6438  df-qs 6442  df-ni 7135  df-pli 7136  df-mi 7137  df-lti 7138  df-plpq 7175  df-mpq 7176  df-enq 7178  df-nqqs 7179  df-plqqs 7180  df-mqqs 7181  df-1nqqs 7182  df-rq 7183  df-ltnqqs 7184  df-enq0 7255  df-nq0 7256  df-0nq0 7257  df-plq0 7258  df-mq0 7259  df-inp 7297  df-iplp 7299  df-iltp 7301
This theorem is referenced by:  prplnqu  7451  addextpr  7452  caucvgprlemcanl  7475  caucvgprprlemnkltj  7520  caucvgprprlemnbj  7524  caucvgprprlemmu  7526  caucvgprprlemloc  7534  caucvgprprlemexbt  7537  caucvgprprlemexb  7538  caucvgprprlemaddq  7539  caucvgprprlem1  7540  caucvgprprlem2  7541  ltsrprg  7578  gt0srpr  7579  lttrsr  7593  ltsosr  7595  ltasrg  7601  prsrlt  7618  ltpsrprg  7634  map2psrprg  7636
  Copyright terms: Public domain W3C validator