ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaprg GIF version

Theorem ltaprg 7681
Description: Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by Jim Kingdon, 26-Dec-2019.)
Assertion
Ref Expression
ltaprg ((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Proof of Theorem ltaprg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltaprlem 7680 . . 3 (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
213ad2ant3 1022 . 2 ((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
3 ltexpri 7675 . . . . 5 ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → ∃𝑥P ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
43adantl 277 . . . 4 (((𝐴P𝐵P𝐶P) ∧ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) → ∃𝑥P ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
5 simpl1 1002 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐴P)
6 simprl 529 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝑥P)
7 ltaddpr 7659 . . . . . . 7 ((𝐴P𝑥P) → 𝐴<P (𝐴 +P 𝑥))
85, 6, 7syl2anc 411 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐴<P (𝐴 +P 𝑥))
9 addassprg 7641 . . . . . . . . . . . 12 ((𝐶P𝐴P𝑥P) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
1093com12 1209 . . . . . . . . . . 11 ((𝐴P𝐶P𝑥P) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
11103expa 1205 . . . . . . . . . 10 (((𝐴P𝐶P) ∧ 𝑥P) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
1211adantrr 479 . . . . . . . . 9 (((𝐴P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
13 simprr 531 . . . . . . . . 9 (((𝐴P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
1412, 13eqtr3d 2228 . . . . . . . 8 (((𝐴P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵))
15143adantl2 1156 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵))
16 simpl3 1004 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐶P)
17 addclpr 7599 . . . . . . . . 9 ((𝐴P𝑥P) → (𝐴 +P 𝑥) ∈ P)
185, 6, 17syl2anc 411 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → (𝐴 +P 𝑥) ∈ P)
19 simpl2 1003 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐵P)
20 addcanprg 7678 . . . . . . . 8 ((𝐶P ∧ (𝐴 +P 𝑥) ∈ P𝐵P) → ((𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵) → (𝐴 +P 𝑥) = 𝐵))
2116, 18, 19, 20syl3anc 1249 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → ((𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵) → (𝐴 +P 𝑥) = 𝐵))
2215, 21mpd 13 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → (𝐴 +P 𝑥) = 𝐵)
238, 22breqtrd 4056 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐴<P 𝐵)
2423adantlr 477 . . . 4 ((((𝐴P𝐵P𝐶P) ∧ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐴<P 𝐵)
254, 24rexlimddv 2616 . . 3 (((𝐴P𝐵P𝐶P) ∧ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) → 𝐴<P 𝐵)
2625ex 115 . 2 ((𝐴P𝐵P𝐶P) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵))
272, 26impbid 129 1 ((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wrex 2473   class class class wbr 4030  (class class class)co 5919  Pcnp 7353   +P cpp 7355  <P cltp 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-iplp 7530  df-iltp 7532
This theorem is referenced by:  prplnqu  7682  addextpr  7683  caucvgprlemcanl  7706  caucvgprprlemnkltj  7751  caucvgprprlemnbj  7755  caucvgprprlemmu  7757  caucvgprprlemloc  7765  caucvgprprlemexbt  7768  caucvgprprlemexb  7769  caucvgprprlemaddq  7770  caucvgprprlem1  7771  caucvgprprlem2  7772  ltsrprg  7809  gt0srpr  7810  lttrsr  7824  ltsosr  7826  ltasrg  7832  prsrlt  7849  ltpsrprg  7865  map2psrprg  7867
  Copyright terms: Public domain W3C validator