ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaprg GIF version

Theorem ltaprg 7731
Description: Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by Jim Kingdon, 26-Dec-2019.)
Assertion
Ref Expression
ltaprg ((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Proof of Theorem ltaprg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltaprlem 7730 . . 3 (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
213ad2ant3 1022 . 2 ((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
3 ltexpri 7725 . . . . 5 ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → ∃𝑥P ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
43adantl 277 . . . 4 (((𝐴P𝐵P𝐶P) ∧ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) → ∃𝑥P ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
5 simpl1 1002 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐴P)
6 simprl 529 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝑥P)
7 ltaddpr 7709 . . . . . . 7 ((𝐴P𝑥P) → 𝐴<P (𝐴 +P 𝑥))
85, 6, 7syl2anc 411 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐴<P (𝐴 +P 𝑥))
9 addassprg 7691 . . . . . . . . . . . 12 ((𝐶P𝐴P𝑥P) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
1093com12 1209 . . . . . . . . . . 11 ((𝐴P𝐶P𝑥P) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
11103expa 1205 . . . . . . . . . 10 (((𝐴P𝐶P) ∧ 𝑥P) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
1211adantrr 479 . . . . . . . . 9 (((𝐴P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
13 simprr 531 . . . . . . . . 9 (((𝐴P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
1412, 13eqtr3d 2239 . . . . . . . 8 (((𝐴P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵))
15143adantl2 1156 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵))
16 simpl3 1004 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐶P)
17 addclpr 7649 . . . . . . . . 9 ((𝐴P𝑥P) → (𝐴 +P 𝑥) ∈ P)
185, 6, 17syl2anc 411 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → (𝐴 +P 𝑥) ∈ P)
19 simpl2 1003 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐵P)
20 addcanprg 7728 . . . . . . . 8 ((𝐶P ∧ (𝐴 +P 𝑥) ∈ P𝐵P) → ((𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵) → (𝐴 +P 𝑥) = 𝐵))
2116, 18, 19, 20syl3anc 1249 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → ((𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵) → (𝐴 +P 𝑥) = 𝐵))
2215, 21mpd 13 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → (𝐴 +P 𝑥) = 𝐵)
238, 22breqtrd 4069 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐴<P 𝐵)
2423adantlr 477 . . . 4 ((((𝐴P𝐵P𝐶P) ∧ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐴<P 𝐵)
254, 24rexlimddv 2627 . . 3 (((𝐴P𝐵P𝐶P) ∧ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) → 𝐴<P 𝐵)
2625ex 115 . 2 ((𝐴P𝐵P𝐶P) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵))
272, 26impbid 129 1 ((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175  wrex 2484   class class class wbr 4043  (class class class)co 5943  Pcnp 7403   +P cpp 7405  <P cltp 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-2o 6502  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465  df-enq0 7536  df-nq0 7537  df-0nq0 7538  df-plq0 7539  df-mq0 7540  df-inp 7578  df-iplp 7580  df-iltp 7582
This theorem is referenced by:  prplnqu  7732  addextpr  7733  caucvgprlemcanl  7756  caucvgprprlemnkltj  7801  caucvgprprlemnbj  7805  caucvgprprlemmu  7807  caucvgprprlemloc  7815  caucvgprprlemexbt  7818  caucvgprprlemexb  7819  caucvgprprlemaddq  7820  caucvgprprlem1  7821  caucvgprprlem2  7822  ltsrprg  7859  gt0srpr  7860  lttrsr  7874  ltsosr  7876  ltasrg  7882  prsrlt  7899  ltpsrprg  7915  map2psrprg  7917
  Copyright terms: Public domain W3C validator