| Step | Hyp | Ref
| Expression |
| 1 | | ltaprlem 7685 |
. . 3
⊢ (𝐶 ∈ P →
(𝐴<P 𝐵 → (𝐶 +P 𝐴)<P
(𝐶
+P 𝐵))) |
| 2 | 1 | 3ad2ant3 1022 |
. 2
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P
(𝐶
+P 𝐵))) |
| 3 | | ltexpri 7680 |
. . . . 5
⊢ ((𝐶 +P
𝐴)<P (𝐶 +P
𝐵) → ∃𝑥 ∈ P ((𝐶 +P
𝐴)
+P 𝑥) = (𝐶 +P 𝐵)) |
| 4 | 3 | adantl 277 |
. . . 4
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝐶
+P 𝐴)<P (𝐶 +P
𝐵)) → ∃𝑥 ∈ P ((𝐶 +P
𝐴)
+P 𝑥) = (𝐶 +P 𝐵)) |
| 5 | | simpl1 1002 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ P ∧ ((𝐶 +P 𝐴) +P
𝑥) = (𝐶 +P 𝐵))) → 𝐴 ∈ P) |
| 6 | | simprl 529 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ P ∧ ((𝐶 +P 𝐴) +P
𝑥) = (𝐶 +P 𝐵))) → 𝑥 ∈ P) |
| 7 | | ltaddpr 7664 |
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝑥 ∈ P)
→ 𝐴<P (𝐴 +P
𝑥)) |
| 8 | 5, 6, 7 | syl2anc 411 |
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ P ∧ ((𝐶 +P 𝐴) +P
𝑥) = (𝐶 +P 𝐵))) → 𝐴<P (𝐴 +P
𝑥)) |
| 9 | | addassprg 7646 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ P ∧
𝐴 ∈ P
∧ 𝑥 ∈
P) → ((𝐶
+P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P
𝑥))) |
| 10 | 9 | 3com12 1209 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ P ∧
𝐶 ∈ P
∧ 𝑥 ∈
P) → ((𝐶
+P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P
𝑥))) |
| 11 | 10 | 3expa 1205 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
𝐶 ∈ P)
∧ 𝑥 ∈
P) → ((𝐶
+P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P
𝑥))) |
| 12 | 11 | adantrr 479 |
. . . . . . . . 9
⊢ (((𝐴 ∈ P ∧
𝐶 ∈ P)
∧ (𝑥 ∈
P ∧ ((𝐶
+P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → ((𝐶 +P 𝐴) +P
𝑥) = (𝐶 +P (𝐴 +P
𝑥))) |
| 13 | | simprr 531 |
. . . . . . . . 9
⊢ (((𝐴 ∈ P ∧
𝐶 ∈ P)
∧ (𝑥 ∈
P ∧ ((𝐶
+P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → ((𝐶 +P 𝐴) +P
𝑥) = (𝐶 +P 𝐵)) |
| 14 | 12, 13 | eqtr3d 2231 |
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
𝐶 ∈ P)
∧ (𝑥 ∈
P ∧ ((𝐶
+P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → (𝐶 +P (𝐴 +P
𝑥)) = (𝐶 +P 𝐵)) |
| 15 | 14 | 3adantl2 1156 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ P ∧ ((𝐶 +P 𝐴) +P
𝑥) = (𝐶 +P 𝐵))) → (𝐶 +P (𝐴 +P
𝑥)) = (𝐶 +P 𝐵)) |
| 16 | | simpl3 1004 |
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ P ∧ ((𝐶 +P 𝐴) +P
𝑥) = (𝐶 +P 𝐵))) → 𝐶 ∈ P) |
| 17 | | addclpr 7604 |
. . . . . . . . 9
⊢ ((𝐴 ∈ P ∧
𝑥 ∈ P)
→ (𝐴
+P 𝑥) ∈ P) |
| 18 | 5, 6, 17 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ P ∧ ((𝐶 +P 𝐴) +P
𝑥) = (𝐶 +P 𝐵))) → (𝐴 +P 𝑥) ∈
P) |
| 19 | | simpl2 1003 |
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ P ∧ ((𝐶 +P 𝐴) +P
𝑥) = (𝐶 +P 𝐵))) → 𝐵 ∈ P) |
| 20 | | addcanprg 7683 |
. . . . . . . 8
⊢ ((𝐶 ∈ P ∧
(𝐴
+P 𝑥) ∈ P ∧ 𝐵 ∈ P) →
((𝐶
+P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵) → (𝐴 +P 𝑥) = 𝐵)) |
| 21 | 16, 18, 19, 20 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ P ∧ ((𝐶 +P 𝐴) +P
𝑥) = (𝐶 +P 𝐵))) → ((𝐶 +P (𝐴 +P
𝑥)) = (𝐶 +P 𝐵) → (𝐴 +P 𝑥) = 𝐵)) |
| 22 | 15, 21 | mpd 13 |
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ P ∧ ((𝐶 +P 𝐴) +P
𝑥) = (𝐶 +P 𝐵))) → (𝐴 +P 𝑥) = 𝐵) |
| 23 | 8, 22 | breqtrd 4059 |
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ P ∧ ((𝐶 +P 𝐴) +P
𝑥) = (𝐶 +P 𝐵))) → 𝐴<P 𝐵) |
| 24 | 23 | adantlr 477 |
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝐶
+P 𝐴)<P (𝐶 +P
𝐵)) ∧ (𝑥 ∈ P ∧
((𝐶
+P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐴<P 𝐵) |
| 25 | 4, 24 | rexlimddv 2619 |
. . 3
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝐶
+P 𝐴)<P (𝐶 +P
𝐵)) → 𝐴<P
𝐵) |
| 26 | 25 | ex 115 |
. 2
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → ((𝐶
+P 𝐴)<P (𝐶 +P
𝐵) → 𝐴<P 𝐵)) |
| 27 | 2, 26 | impbid 129 |
1
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P
(𝐶
+P 𝐵))) |