ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaprg GIF version

Theorem ltaprg 7593
Description: Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by Jim Kingdon, 26-Dec-2019.)
Assertion
Ref Expression
ltaprg ((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Proof of Theorem ltaprg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltaprlem 7592 . . 3 (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
213ad2ant3 1020 . 2 ((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
3 ltexpri 7587 . . . . 5 ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → ∃𝑥P ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
43adantl 277 . . . 4 (((𝐴P𝐵P𝐶P) ∧ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) → ∃𝑥P ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
5 simpl1 1000 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐴P)
6 simprl 529 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝑥P)
7 ltaddpr 7571 . . . . . . 7 ((𝐴P𝑥P) → 𝐴<P (𝐴 +P 𝑥))
85, 6, 7syl2anc 411 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐴<P (𝐴 +P 𝑥))
9 addassprg 7553 . . . . . . . . . . . 12 ((𝐶P𝐴P𝑥P) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
1093com12 1207 . . . . . . . . . . 11 ((𝐴P𝐶P𝑥P) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
11103expa 1203 . . . . . . . . . 10 (((𝐴P𝐶P) ∧ 𝑥P) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
1211adantrr 479 . . . . . . . . 9 (((𝐴P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
13 simprr 531 . . . . . . . . 9 (((𝐴P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
1412, 13eqtr3d 2210 . . . . . . . 8 (((𝐴P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵))
15143adantl2 1154 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵))
16 simpl3 1002 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐶P)
17 addclpr 7511 . . . . . . . . 9 ((𝐴P𝑥P) → (𝐴 +P 𝑥) ∈ P)
185, 6, 17syl2anc 411 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → (𝐴 +P 𝑥) ∈ P)
19 simpl2 1001 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐵P)
20 addcanprg 7590 . . . . . . . 8 ((𝐶P ∧ (𝐴 +P 𝑥) ∈ P𝐵P) → ((𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵) → (𝐴 +P 𝑥) = 𝐵))
2116, 18, 19, 20syl3anc 1238 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → ((𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵) → (𝐴 +P 𝑥) = 𝐵))
2215, 21mpd 13 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → (𝐴 +P 𝑥) = 𝐵)
238, 22breqtrd 4024 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐴<P 𝐵)
2423adantlr 477 . . . 4 ((((𝐴P𝐵P𝐶P) ∧ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) ∧ (𝑥P ∧ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))) → 𝐴<P 𝐵)
254, 24rexlimddv 2597 . . 3 (((𝐴P𝐵P𝐶P) ∧ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) → 𝐴<P 𝐵)
2625ex 115 . 2 ((𝐴P𝐵P𝐶P) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵))
272, 26impbid 129 1 ((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2146  wrex 2454   class class class wbr 3998  (class class class)co 5865  Pcnp 7265   +P cpp 7267  <P cltp 7269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-eprel 4283  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-1o 6407  df-2o 6408  df-oadd 6411  df-omul 6412  df-er 6525  df-ec 6527  df-qs 6531  df-ni 7278  df-pli 7279  df-mi 7280  df-lti 7281  df-plpq 7318  df-mpq 7319  df-enq 7321  df-nqqs 7322  df-plqqs 7323  df-mqqs 7324  df-1nqqs 7325  df-rq 7326  df-ltnqqs 7327  df-enq0 7398  df-nq0 7399  df-0nq0 7400  df-plq0 7401  df-mq0 7402  df-inp 7440  df-iplp 7442  df-iltp 7444
This theorem is referenced by:  prplnqu  7594  addextpr  7595  caucvgprlemcanl  7618  caucvgprprlemnkltj  7663  caucvgprprlemnbj  7667  caucvgprprlemmu  7669  caucvgprprlemloc  7677  caucvgprprlemexbt  7680  caucvgprprlemexb  7681  caucvgprprlemaddq  7682  caucvgprprlem1  7683  caucvgprprlem2  7684  ltsrprg  7721  gt0srpr  7722  lttrsr  7736  ltsosr  7738  ltasrg  7744  prsrlt  7761  ltpsrprg  7777  map2psrprg  7779
  Copyright terms: Public domain W3C validator