![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zdiv | GIF version |
Description: Two ways to express "𝑀 divides 𝑁. (Contributed by NM, 3-Oct-2008.) |
Ref | Expression |
---|---|
zdiv | ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnap0 8607 | . . 3 ⊢ (𝑀 ∈ ℕ → 𝑀 # 0) | |
2 | 1 | adantr 272 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑀 # 0) |
3 | nncn 8586 | . . 3 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℂ) | |
4 | zcn 8911 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
5 | zcn 8911 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℂ) | |
6 | divcanap3 8319 | . . . . . . . . . . . . 13 ⊢ ((𝑘 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 # 0) → ((𝑀 · 𝑘) / 𝑀) = 𝑘) | |
7 | 6 | 3coml 1156 | . . . . . . . . . . . 12 ⊢ ((𝑀 ∈ ℂ ∧ 𝑀 # 0 ∧ 𝑘 ∈ ℂ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘) |
8 | 7 | 3expa 1149 | . . . . . . . . . . 11 ⊢ (((𝑀 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℂ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘) |
9 | 5, 8 | sylan2 282 | . . . . . . . . . 10 ⊢ (((𝑀 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘) |
10 | 9 | 3adantl2 1106 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘) |
11 | oveq1 5713 | . . . . . . . . 9 ⊢ ((𝑀 · 𝑘) = 𝑁 → ((𝑀 · 𝑘) / 𝑀) = (𝑁 / 𝑀)) | |
12 | 10, 11 | sylan9req 2153 | . . . . . . . 8 ⊢ ((((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 = (𝑁 / 𝑀)) |
13 | simplr 500 | . . . . . . . 8 ⊢ ((((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 ∈ ℤ) | |
14 | 12, 13 | eqeltrrd 2177 | . . . . . . 7 ⊢ ((((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → (𝑁 / 𝑀) ∈ ℤ) |
15 | 14 | exp31 359 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → (𝑘 ∈ ℤ → ((𝑀 · 𝑘) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ))) |
16 | 15 | rexlimdv 2507 | . . . . 5 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ)) |
17 | divcanap2 8301 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 # 0) → (𝑀 · (𝑁 / 𝑀)) = 𝑁) | |
18 | 17 | 3com12 1153 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → (𝑀 · (𝑁 / 𝑀)) = 𝑁) |
19 | oveq2 5714 | . . . . . . . . 9 ⊢ (𝑘 = (𝑁 / 𝑀) → (𝑀 · 𝑘) = (𝑀 · (𝑁 / 𝑀))) | |
20 | 19 | eqeq1d 2108 | . . . . . . . 8 ⊢ (𝑘 = (𝑁 / 𝑀) → ((𝑀 · 𝑘) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁)) |
21 | 20 | rspcev 2744 | . . . . . . 7 ⊢ (((𝑁 / 𝑀) ∈ ℤ ∧ (𝑀 · (𝑁 / 𝑀)) = 𝑁) → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁) |
22 | 21 | expcom 115 | . . . . . 6 ⊢ ((𝑀 · (𝑁 / 𝑀)) = 𝑁 → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁)) |
23 | 18, 22 | syl 14 | . . . . 5 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁)) |
24 | 16, 23 | impbid 128 | . . . 4 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
25 | 24 | 3expia 1151 | . . 3 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 # 0 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))) |
26 | 3, 4, 25 | syl2an 285 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 # 0 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))) |
27 | 2, 26 | mpd 13 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 930 = wceq 1299 ∈ wcel 1448 ∃wrex 2376 class class class wbr 3875 (class class class)co 5706 ℂcc 7498 0cc0 7500 · cmul 7505 # cap 8209 / cdiv 8293 ℕcn 8578 ℤcz 8906 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-mulrcl 7594 ax-addcom 7595 ax-mulcom 7596 ax-addass 7597 ax-mulass 7598 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-1rid 7602 ax-0id 7603 ax-rnegex 7604 ax-precex 7605 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 ax-pre-mulgt0 7612 ax-pre-mulext 7613 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rmo 2383 df-rab 2384 df-v 2643 df-sbc 2863 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-br 3876 df-opab 3930 df-id 4153 df-po 4156 df-iso 4157 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-iota 5024 df-fun 5061 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-reap 8203 df-ap 8210 df-div 8294 df-inn 8579 df-z 8907 |
This theorem is referenced by: addmodlteq 10012 |
Copyright terms: Public domain | W3C validator |