ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdiv GIF version

Theorem zdiv 8933
Description: Two ways to express "𝑀 divides 𝑁. (Contributed by NM, 3-Oct-2008.)
Assertion
Ref Expression
zdiv ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem zdiv
StepHypRef Expression
1 nnap0 8549 . . 3 (𝑀 ∈ ℕ → 𝑀 # 0)
21adantr 271 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑀 # 0)
3 nncn 8528 . . 3 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
4 zcn 8853 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
5 zcn 8853 . . . . . . . . . . 11 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
6 divcanap3 8262 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 # 0) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
763coml 1153 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑀 # 0 ∧ 𝑘 ∈ ℂ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
873expa 1146 . . . . . . . . . . 11 (((𝑀 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℂ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
95, 8sylan2 281 . . . . . . . . . 10 (((𝑀 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
1093adantl2 1103 . . . . . . . . 9 (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
11 oveq1 5697 . . . . . . . . 9 ((𝑀 · 𝑘) = 𝑁 → ((𝑀 · 𝑘) / 𝑀) = (𝑁 / 𝑀))
1210, 11sylan9req 2148 . . . . . . . 8 ((((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 = (𝑁 / 𝑀))
13 simplr 498 . . . . . . . 8 ((((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 ∈ ℤ)
1412, 13eqeltrrd 2172 . . . . . . 7 ((((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → (𝑁 / 𝑀) ∈ ℤ)
1514exp31 357 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → (𝑘 ∈ ℤ → ((𝑀 · 𝑘) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ)))
1615rexlimdv 2501 . . . . 5 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ))
17 divcanap2 8244 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 # 0) → (𝑀 · (𝑁 / 𝑀)) = 𝑁)
18173com12 1150 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → (𝑀 · (𝑁 / 𝑀)) = 𝑁)
19 oveq2 5698 . . . . . . . . 9 (𝑘 = (𝑁 / 𝑀) → (𝑀 · 𝑘) = (𝑀 · (𝑁 / 𝑀)))
2019eqeq1d 2103 . . . . . . . 8 (𝑘 = (𝑁 / 𝑀) → ((𝑀 · 𝑘) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁))
2120rspcev 2736 . . . . . . 7 (((𝑁 / 𝑀) ∈ ℤ ∧ (𝑀 · (𝑁 / 𝑀)) = 𝑁) → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁)
2221expcom 115 . . . . . 6 ((𝑀 · (𝑁 / 𝑀)) = 𝑁 → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁))
2318, 22syl 14 . . . . 5 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁))
2416, 23impbid 128 . . . 4 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
25243expia 1148 . . 3 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 # 0 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)))
263, 4, 25syl2an 284 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 # 0 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)))
272, 26mpd 13 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 927   = wceq 1296  wcel 1445  wrex 2371   class class class wbr 3867  (class class class)co 5690  cc 7445  0cc0 7447   · cmul 7452   # cap 8155   / cdiv 8236  cn 8520  cz 8848
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-id 4144  df-po 4147  df-iso 4148  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-z 8849
This theorem is referenced by:  addmodlteq  9954
  Copyright terms: Public domain W3C validator