ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdiv GIF version

Theorem zdiv 9443
Description: Two ways to express "𝑀 divides 𝑁. (Contributed by NM, 3-Oct-2008.)
Assertion
Ref Expression
zdiv ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem zdiv
StepHypRef Expression
1 nnap0 9047 . . 3 (𝑀 ∈ ℕ → 𝑀 # 0)
21adantr 276 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑀 # 0)
3 nncn 9026 . . 3 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
4 zcn 9359 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
5 zcn 9359 . . . . . . . . . . 11 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
6 divcanap3 8753 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 # 0) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
763coml 1212 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑀 # 0 ∧ 𝑘 ∈ ℂ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
873expa 1205 . . . . . . . . . . 11 (((𝑀 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℂ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
95, 8sylan2 286 . . . . . . . . . 10 (((𝑀 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
1093adantl2 1156 . . . . . . . . 9 (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
11 oveq1 5941 . . . . . . . . 9 ((𝑀 · 𝑘) = 𝑁 → ((𝑀 · 𝑘) / 𝑀) = (𝑁 / 𝑀))
1210, 11sylan9req 2258 . . . . . . . 8 ((((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 = (𝑁 / 𝑀))
13 simplr 528 . . . . . . . 8 ((((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 ∈ ℤ)
1412, 13eqeltrrd 2282 . . . . . . 7 ((((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → (𝑁 / 𝑀) ∈ ℤ)
1514exp31 364 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → (𝑘 ∈ ℤ → ((𝑀 · 𝑘) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ)))
1615rexlimdv 2621 . . . . 5 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ))
17 divcanap2 8735 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 # 0) → (𝑀 · (𝑁 / 𝑀)) = 𝑁)
18173com12 1209 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → (𝑀 · (𝑁 / 𝑀)) = 𝑁)
19 oveq2 5942 . . . . . . . . 9 (𝑘 = (𝑁 / 𝑀) → (𝑀 · 𝑘) = (𝑀 · (𝑁 / 𝑀)))
2019eqeq1d 2213 . . . . . . . 8 (𝑘 = (𝑁 / 𝑀) → ((𝑀 · 𝑘) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁))
2120rspcev 2876 . . . . . . 7 (((𝑁 / 𝑀) ∈ ℤ ∧ (𝑀 · (𝑁 / 𝑀)) = 𝑁) → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁)
2221expcom 116 . . . . . 6 ((𝑀 · (𝑁 / 𝑀)) = 𝑁 → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁))
2318, 22syl 14 . . . . 5 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁))
2416, 23impbid 129 . . . 4 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
25243expia 1207 . . 3 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 # 0 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)))
263, 4, 25syl2an 289 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 # 0 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)))
272, 26mpd 13 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175  wrex 2484   class class class wbr 4043  (class class class)co 5934  cc 7905  0cc0 7907   · cmul 7912   # cap 8636   / cdiv 8727  cn 9018  cz 9354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-id 4338  df-po 4341  df-iso 4342  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-iota 5229  df-fun 5270  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-z 9355
This theorem is referenced by:  addmodlteq  10524
  Copyright terms: Public domain W3C validator