ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdiv GIF version

Theorem zdiv 9405
Description: Two ways to express "𝑀 divides 𝑁. (Contributed by NM, 3-Oct-2008.)
Assertion
Ref Expression
zdiv ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem zdiv
StepHypRef Expression
1 nnap0 9011 . . 3 (𝑀 ∈ ℕ → 𝑀 # 0)
21adantr 276 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑀 # 0)
3 nncn 8990 . . 3 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
4 zcn 9322 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
5 zcn 9322 . . . . . . . . . . 11 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
6 divcanap3 8717 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 # 0) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
763coml 1212 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑀 # 0 ∧ 𝑘 ∈ ℂ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
873expa 1205 . . . . . . . . . . 11 (((𝑀 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℂ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
95, 8sylan2 286 . . . . . . . . . 10 (((𝑀 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
1093adantl2 1156 . . . . . . . . 9 (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
11 oveq1 5925 . . . . . . . . 9 ((𝑀 · 𝑘) = 𝑁 → ((𝑀 · 𝑘) / 𝑀) = (𝑁 / 𝑀))
1210, 11sylan9req 2247 . . . . . . . 8 ((((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 = (𝑁 / 𝑀))
13 simplr 528 . . . . . . . 8 ((((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 ∈ ℤ)
1412, 13eqeltrrd 2271 . . . . . . 7 ((((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → (𝑁 / 𝑀) ∈ ℤ)
1514exp31 364 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → (𝑘 ∈ ℤ → ((𝑀 · 𝑘) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ)))
1615rexlimdv 2610 . . . . 5 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ))
17 divcanap2 8699 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 # 0) → (𝑀 · (𝑁 / 𝑀)) = 𝑁)
18173com12 1209 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → (𝑀 · (𝑁 / 𝑀)) = 𝑁)
19 oveq2 5926 . . . . . . . . 9 (𝑘 = (𝑁 / 𝑀) → (𝑀 · 𝑘) = (𝑀 · (𝑁 / 𝑀)))
2019eqeq1d 2202 . . . . . . . 8 (𝑘 = (𝑁 / 𝑀) → ((𝑀 · 𝑘) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁))
2120rspcev 2864 . . . . . . 7 (((𝑁 / 𝑀) ∈ ℤ ∧ (𝑀 · (𝑁 / 𝑀)) = 𝑁) → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁)
2221expcom 116 . . . . . 6 ((𝑀 · (𝑁 / 𝑀)) = 𝑁 → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁))
2318, 22syl 14 . . . . 5 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁))
2416, 23impbid 129 . . . 4 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 # 0) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
25243expia 1207 . . 3 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 # 0 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)))
263, 4, 25syl2an 289 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 # 0 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)))
272, 26mpd 13 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wrex 2473   class class class wbr 4029  (class class class)co 5918  cc 7870  0cc0 7872   · cmul 7877   # cap 8600   / cdiv 8691  cn 8982  cz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-z 9318
This theorem is referenced by:  addmodlteq  10469
  Copyright terms: Public domain W3C validator