| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adantl2 | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3adantl.1 |
|
| Ref | Expression |
|---|---|
| 3adantl2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 1019 |
. 2
| |
| 2 | 3adantl.1 |
. 2
| |
| 3 | 1, 2 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3ad2antl1 1183 nnmord 6661 ltaprg 7802 lediv2a 9038 zdiv 9531 mulgnn0subcl 13667 mulgsubcl 13668 ghmmulg 13788 neiint 14813 cnpnei 14887 |
| Copyright terms: Public domain | W3C validator |