![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3ancoma | GIF version |
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
3ancoma | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 266 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
2 | 1 | anbi1i 458 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜓 ∧ 𝜑) ∧ 𝜒)) |
3 | df-3an 980 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
4 | df-3an 980 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ ((𝜓 ∧ 𝜑) ∧ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4i 212 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: 3ancomb 986 3anrev 988 3anan12 990 3com12 1207 elfzmlbp 10134 elfzo2 10152 pythagtriplem2 12268 pythagtrip 12285 xpsfrnel 12768 |
Copyright terms: Public domain | W3C validator |