ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ancoma GIF version

Theorem 3ancoma 1009
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3ancoma ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))

Proof of Theorem 3ancoma
StepHypRef Expression
1 ancom 266 . . 3 ((𝜑𝜓) ↔ (𝜓𝜑))
21anbi1i 458 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜓𝜑) ∧ 𝜒))
3 df-3an 1004 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
4 df-3an 1004 . 2 ((𝜓𝜑𝜒) ↔ ((𝜓𝜑) ∧ 𝜒))
52, 3, 43bitr4i 212 1 ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  3ancomb  1010  3anrev  1012  3anan12  1014  3com12  1231  elfzmlbp  10324  elfzo2  10342  pythagtriplem2  12784  pythagtrip  12801  xpsfrnel  13372
  Copyright terms: Public domain W3C validator