Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3orrot | GIF version |
Description: Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
3orrot | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 723 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜑)) | |
2 | 3orass 976 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | df-3or 974 | . 2 ⊢ ((𝜓 ∨ 𝜒 ∨ 𝜑) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜑)) | |
4 | 1, 2, 3 | 3bitr4i 211 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 703 ∨ w3o 972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-3or 974 |
This theorem is referenced by: 3mix2 1162 3mix3 1163 eueq3dc 2904 tprot 3676 sotritrieq 4310 exmidontriimlem3 7200 elnnz 9222 elznn 9228 ztri3or0 9254 zapne 9286 |
Copyright terms: Public domain | W3C validator |