ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem2 GIF version

Theorem pythagtriplem2 12285
Description: Lemma for pythagtrip 12302. Prove the full version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem2 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โ†’ (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†’ ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)))
Distinct variable groups:   ๐ด,๐‘›,๐‘š,๐‘˜   ๐ต,๐‘›,๐‘š,๐‘˜   ๐ถ,๐‘›,๐‘š,๐‘˜

Proof of Theorem pythagtriplem2
StepHypRef Expression
1 simplll 533 . . . . . . . 8 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ ๐ด โˆˆ โ„•)
2 simpllr 534 . . . . . . . 8 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ ๐ต โˆˆ โ„•)
3 nnz 9291 . . . . . . . . . 10 (๐‘˜ โˆˆ โ„• โ†’ ๐‘˜ โˆˆ โ„ค)
43adantl 277 . . . . . . . . 9 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ ๐‘˜ โˆˆ โ„ค)
5 simplrr 536 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ ๐‘š โˆˆ โ„•)
65nnzd 9393 . . . . . . . . . . 11 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ ๐‘š โˆˆ โ„ค)
7 zsqcl 10610 . . . . . . . . . . 11 (๐‘š โˆˆ โ„ค โ†’ (๐‘šโ†‘2) โˆˆ โ„ค)
86, 7syl 14 . . . . . . . . . 10 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ (๐‘šโ†‘2) โˆˆ โ„ค)
9 simplrl 535 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ ๐‘› โˆˆ โ„•)
109nnzd 9393 . . . . . . . . . . 11 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ ๐‘› โˆˆ โ„ค)
11 zsqcl 10610 . . . . . . . . . . 11 (๐‘› โˆˆ โ„ค โ†’ (๐‘›โ†‘2) โˆˆ โ„ค)
1210, 11syl 14 . . . . . . . . . 10 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ (๐‘›โ†‘2) โˆˆ โ„ค)
138, 12zsubcld 9399 . . . . . . . . 9 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2)) โˆˆ โ„ค)
144, 13zmulcld 9400 . . . . . . . 8 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆˆ โ„ค)
15 2z 9300 . . . . . . . . . . 11 2 โˆˆ โ„ค
1615a1i 9 . . . . . . . . . 10 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ 2 โˆˆ โ„ค)
176, 10zmulcld 9400 . . . . . . . . . 10 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ (๐‘š ยท ๐‘›) โˆˆ โ„ค)
1816, 17zmulcld 9400 . . . . . . . . 9 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ (2 ยท (๐‘š ยท ๐‘›)) โˆˆ โ„ค)
194, 18zmulcld 9400 . . . . . . . 8 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆˆ โ„ค)
20 preq12bg 3788 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง ((๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆˆ โ„ค โˆง (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆˆ โ„ค)) โ†’ ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โ†” ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2)))))))
211, 2, 14, 19, 20syl22anc 1250 . . . . . . 7 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โ†” ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2)))))))
2221anbi1d 465 . . . . . 6 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ (({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” (((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
23 andir 820 . . . . . . 7 ((((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” (((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ ((๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2)))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
24 df-3an 982 . . . . . . . 8 ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))
25 df-3an 982 . . . . . . . 8 ((๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” ((๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2)))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))
2624, 25orbi12i 765 . . . . . . 7 (((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))) โ†” (((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ ((๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2)))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
2723, 26bitr4i 187 . . . . . 6 ((((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
2822, 27bitrdi 196 . . . . 5 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ (({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))))
2928rexbidva 2487 . . . 4 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โ†’ (โˆƒ๐‘˜ โˆˆ โ„• ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” โˆƒ๐‘˜ โˆˆ โ„• ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))))
30292rexbidva 2513 . . 3 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โ†’ (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))))
31 r19.43 2648 . . . . 5 (โˆƒ๐‘˜ โˆˆ โ„• ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))) โ†” (โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
32312rexbii 2499 . . . 4 (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))) โ†” โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• (โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
33 r19.43 2648 . . . . 5 (โˆƒ๐‘š โˆˆ โ„• (โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))) โ†” (โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
3433rexbii 2497 . . . 4 (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• (โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))) โ†” โˆƒ๐‘› โˆˆ โ„• (โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
35 r19.43 2648 . . . 4 (โˆƒ๐‘› โˆˆ โ„• (โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))) โ†” (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
3632, 34, 353bitri 206 . . 3 (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))) โ†” (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
3730, 36bitrdi 196 . 2 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โ†’ (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))))
38 pythagtriplem1 12284 . . . 4 (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†’ ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2))
3938a1i 9 . . 3 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โ†’ (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†’ ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)))
40 3ancoma 987 . . . . . . 7 ((๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))
4140rexbii 2497 . . . . . 6 (โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))
42412rexbii 2499 . . . . 5 (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))
43 pythagtriplem1 12284 . . . . 5 (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†’ ((๐ตโ†‘2) + (๐ดโ†‘2)) = (๐ถโ†‘2))
4442, 43sylbi 121 . . . 4 (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†’ ((๐ตโ†‘2) + (๐ดโ†‘2)) = (๐ถโ†‘2))
45 nncn 8946 . . . . . . 7 (๐ด โˆˆ โ„• โ†’ ๐ด โˆˆ โ„‚)
4645sqcld 10671 . . . . . 6 (๐ด โˆˆ โ„• โ†’ (๐ดโ†‘2) โˆˆ โ„‚)
47 nncn 8946 . . . . . . 7 (๐ต โˆˆ โ„• โ†’ ๐ต โˆˆ โ„‚)
4847sqcld 10671 . . . . . 6 (๐ต โˆˆ โ„• โ†’ (๐ตโ†‘2) โˆˆ โ„‚)
49 addcom 8113 . . . . . 6 (((๐ดโ†‘2) โˆˆ โ„‚ โˆง (๐ตโ†‘2) โˆˆ โ„‚) โ†’ ((๐ดโ†‘2) + (๐ตโ†‘2)) = ((๐ตโ†‘2) + (๐ดโ†‘2)))
5046, 48, 49syl2an 289 . . . . 5 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โ†’ ((๐ดโ†‘2) + (๐ตโ†‘2)) = ((๐ตโ†‘2) + (๐ดโ†‘2)))
5150eqeq1d 2198 . . . 4 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โ†’ (((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โ†” ((๐ตโ†‘2) + (๐ดโ†‘2)) = (๐ถโ†‘2)))
5244, 51imbitrrid 156 . . 3 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โ†’ (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†’ ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)))
5339, 52jaod 718 . 2 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โ†’ ((โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))) โ†’ ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)))
5437, 53sylbid 150 1 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โ†’ (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†’ ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โ†” wb 105   โˆจ wo 709   โˆง w3a 980   = wceq 1364   โˆˆ wcel 2160  โˆƒwrex 2469  {cpr 3608  (class class class)co 5891  โ„‚cc 7828   + caddc 7833   ยท cmul 7835   โˆ’ cmin 8147  โ„•cn 8938  2c2 8989  โ„คcz 9272  โ†‘cexp 10538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7921  ax-resscn 7922  ax-1cn 7923  ax-1re 7924  ax-icn 7925  ax-addcl 7926  ax-addrcl 7927  ax-mulcl 7928  ax-mulrcl 7929  ax-addcom 7930  ax-mulcom 7931  ax-addass 7932  ax-mulass 7933  ax-distr 7934  ax-i2m1 7935  ax-0lt1 7936  ax-1rid 7937  ax-0id 7938  ax-rnegex 7939  ax-precex 7940  ax-cnre 7941  ax-pre-ltirr 7942  ax-pre-ltwlin 7943  ax-pre-lttrn 7944  ax-pre-apti 7945  ax-pre-ltadd 7946  ax-pre-mulgt0 7947  ax-pre-mulext 7948
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-frec 6410  df-pnf 8013  df-mnf 8014  df-xr 8015  df-ltxr 8016  df-le 8017  df-sub 8149  df-neg 8150  df-reap 8551  df-ap 8558  df-div 8649  df-inn 8939  df-2 8997  df-3 8998  df-4 8999  df-n0 9196  df-z 9273  df-uz 9548  df-seqfrec 10465  df-exp 10539
This theorem is referenced by:  pythagtrip  12302
  Copyright terms: Public domain W3C validator