ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzmlbp GIF version

Theorem elfzmlbp 10254
Description: Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.)
Assertion
Ref Expression
elfzmlbp ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → (𝐾𝑀) ∈ (0...𝑁))

Proof of Theorem elfzmlbp
StepHypRef Expression
1 elfz2 10137 . . . 4 (𝐾 ∈ (𝑀...(𝑀 + 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))))
2 znn0sub 9438 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
32adantr 276 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
43biimpcd 159 . . . . . . . . . . . 12 (𝑀𝐾 → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ∈ ℕ0))
54adantr 276 . . . . . . . . . . 11 ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ∈ ℕ0))
65impcom 125 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → (𝐾𝑀) ∈ ℕ0)
7 zre 9376 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
87adantr 276 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑀 ∈ ℝ)
98adantr 276 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
10 zre 9376 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1110adantl 277 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℝ)
1211adantr 276 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℝ)
13 zaddcl 9412 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
1413adantlr 477 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
1514zred 9495 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℝ)
16 letr 8155 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → 𝑀 ≤ (𝑀 + 𝑁)))
179, 12, 15, 16syl3anc 1250 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → 𝑀 ≤ (𝑀 + 𝑁)))
18 zre 9376 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
19 addge01 8545 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁𝑀 ≤ (𝑀 + 𝑁)))
208, 18, 19syl2an 289 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁𝑀 ≤ (𝑀 + 𝑁)))
21 elnn0z 9385 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
2221simplbi2 385 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (0 ≤ 𝑁𝑁 ∈ ℕ0))
2322adantl 277 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁𝑁 ∈ ℕ0))
2420, 23sylbird 170 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ (𝑀 + 𝑁) → 𝑁 ∈ ℕ0))
2517, 24syld 45 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → 𝑁 ∈ ℕ0))
2625imp 124 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → 𝑁 ∈ ℕ0)
27 df-3an 983 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ))
28 3ancoma 988 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2927, 28bitr3i 186 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3010, 7, 183anim123i 1187 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
3129, 30sylbi 121 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
32 lesubadd2 8508 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐾𝑀) ≤ 𝑁𝐾 ≤ (𝑀 + 𝑁)))
3331, 32syl 14 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀) ≤ 𝑁𝐾 ≤ (𝑀 + 𝑁)))
3433biimprcd 160 . . . . . . . . . . . 12 (𝐾 ≤ (𝑀 + 𝑁) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ≤ 𝑁))
3534adantl 277 . . . . . . . . . . 11 ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ≤ 𝑁))
3635impcom 125 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → (𝐾𝑀) ≤ 𝑁)
376, 26, 363jca 1180 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
3837exp31 364 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ ℤ → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))))
3938com23 78 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (𝑁 ∈ ℤ → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))))
40393adant2 1019 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (𝑁 ∈ ℤ → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))))
4140imp 124 . . . . 5 (((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → (𝑁 ∈ ℤ → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁)))
4241com12 30 . . . 4 (𝑁 ∈ ℤ → (((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁)))
431, 42biimtrid 152 . . 3 (𝑁 ∈ ℤ → (𝐾 ∈ (𝑀...(𝑀 + 𝑁)) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁)))
4443imp 124 . 2 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
45 elfz2nn0 10234 . 2 ((𝐾𝑀) ∈ (0...𝑁) ↔ ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
4644, 45sylibr 134 1 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → (𝐾𝑀) ∈ (0...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wcel 2176   class class class wbr 4044  (class class class)co 5944  cr 7924  0cc0 7925   + caddc 7928  cle 8108  cmin 8243  0cn0 9295  cz 9372  ...cfz 10130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator