ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzmlbp GIF version

Theorem elfzmlbp 10118
Description: Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.)
Assertion
Ref Expression
elfzmlbp ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → (𝐾𝑀) ∈ (0...𝑁))

Proof of Theorem elfzmlbp
StepHypRef Expression
1 elfz2 10002 . . . 4 (𝐾 ∈ (𝑀...(𝑀 + 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))))
2 znn0sub 9307 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
32adantr 276 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
43biimpcd 159 . . . . . . . . . . . 12 (𝑀𝐾 → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ∈ ℕ0))
54adantr 276 . . . . . . . . . . 11 ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ∈ ℕ0))
65impcom 125 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → (𝐾𝑀) ∈ ℕ0)
7 zre 9246 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
87adantr 276 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑀 ∈ ℝ)
98adantr 276 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
10 zre 9246 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1110adantl 277 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℝ)
1211adantr 276 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℝ)
13 zaddcl 9282 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
1413adantlr 477 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
1514zred 9364 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℝ)
16 letr 8030 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → 𝑀 ≤ (𝑀 + 𝑁)))
179, 12, 15, 16syl3anc 1238 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → 𝑀 ≤ (𝑀 + 𝑁)))
18 zre 9246 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
19 addge01 8419 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁𝑀 ≤ (𝑀 + 𝑁)))
208, 18, 19syl2an 289 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁𝑀 ≤ (𝑀 + 𝑁)))
21 elnn0z 9255 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
2221simplbi2 385 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (0 ≤ 𝑁𝑁 ∈ ℕ0))
2322adantl 277 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁𝑁 ∈ ℕ0))
2420, 23sylbird 170 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ (𝑀 + 𝑁) → 𝑁 ∈ ℕ0))
2517, 24syld 45 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → 𝑁 ∈ ℕ0))
2625imp 124 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → 𝑁 ∈ ℕ0)
27 df-3an 980 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ))
28 3ancoma 985 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2927, 28bitr3i 186 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3010, 7, 183anim123i 1184 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
3129, 30sylbi 121 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
32 lesubadd2 8382 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐾𝑀) ≤ 𝑁𝐾 ≤ (𝑀 + 𝑁)))
3331, 32syl 14 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀) ≤ 𝑁𝐾 ≤ (𝑀 + 𝑁)))
3433biimprcd 160 . . . . . . . . . . . 12 (𝐾 ≤ (𝑀 + 𝑁) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ≤ 𝑁))
3534adantl 277 . . . . . . . . . . 11 ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ≤ 𝑁))
3635impcom 125 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → (𝐾𝑀) ≤ 𝑁)
376, 26, 363jca 1177 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
3837exp31 364 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ ℤ → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))))
3938com23 78 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (𝑁 ∈ ℤ → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))))
40393adant2 1016 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (𝑁 ∈ ℤ → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))))
4140imp 124 . . . . 5 (((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → (𝑁 ∈ ℤ → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁)))
4241com12 30 . . . 4 (𝑁 ∈ ℤ → (((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁)))
431, 42biimtrid 152 . . 3 (𝑁 ∈ ℤ → (𝐾 ∈ (𝑀...(𝑀 + 𝑁)) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁)))
4443imp 124 . 2 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
45 elfz2nn0 10098 . 2 ((𝐾𝑀) ∈ (0...𝑁) ↔ ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
4644, 45sylibr 134 1 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → (𝐾𝑀) ∈ (0...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978  wcel 2148   class class class wbr 4000  (class class class)co 5869  cr 7801  0cc0 7802   + caddc 7805  cle 7983  cmin 8118  0cn0 9165  cz 9242  ...cfz 9995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator