ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfrnel GIF version

Theorem xpsfrnel 12987
Description: Elementhood in the target space of the function 𝐹 appearing in xpsval 12995. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
xpsfrnel (𝐺X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺

Proof of Theorem xpsfrnel
StepHypRef Expression
1 elixp2 6761 . 2 (𝐺X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)))
2 3ancoma 987 . . 3 ((𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ (𝐺 Fn 2o𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)))
3 2onn 6579 . . . . . . . . . 10 2o ∈ ω
4 nnfi 6933 . . . . . . . . . 10 (2o ∈ ω → 2o ∈ Fin)
53, 4ax-mp 5 . . . . . . . . 9 2o ∈ Fin
6 fnfi 7002 . . . . . . . . 9 ((𝐺 Fn 2o ∧ 2o ∈ Fin) → 𝐺 ∈ Fin)
75, 6mpan2 425 . . . . . . . 8 (𝐺 Fn 2o𝐺 ∈ Fin)
87elexd 2776 . . . . . . 7 (𝐺 Fn 2o𝐺 ∈ V)
98biantrurd 305 . . . . . 6 (𝐺 Fn 2o → (∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵))))
10 df2o3 6488 . . . . . . . 8 2o = {∅, 1o}
1110raleqi 2697 . . . . . . 7 (∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ ∀𝑘 ∈ {∅, 1o} (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵))
12 0ex 4160 . . . . . . . 8 ∅ ∈ V
13 1oex 6482 . . . . . . . 8 1o ∈ V
14 fveq2 5558 . . . . . . . . 9 (𝑘 = ∅ → (𝐺𝑘) = (𝐺‘∅))
15 iftrue 3566 . . . . . . . . 9 (𝑘 = ∅ → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐴)
1614, 15eleq12d 2267 . . . . . . . 8 (𝑘 = ∅ → ((𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺‘∅) ∈ 𝐴))
17 fveq2 5558 . . . . . . . . 9 (𝑘 = 1o → (𝐺𝑘) = (𝐺‘1o))
18 1n0 6490 . . . . . . . . . . 11 1o ≠ ∅
19 neeq1 2380 . . . . . . . . . . 11 (𝑘 = 1o → (𝑘 ≠ ∅ ↔ 1o ≠ ∅))
2018, 19mpbiri 168 . . . . . . . . . 10 (𝑘 = 1o𝑘 ≠ ∅)
21 ifnefalse 3572 . . . . . . . . . 10 (𝑘 ≠ ∅ → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐵)
2220, 21syl 14 . . . . . . . . 9 (𝑘 = 1o → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐵)
2317, 22eleq12d 2267 . . . . . . . 8 (𝑘 = 1o → ((𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺‘1o) ∈ 𝐵))
2412, 13, 16, 23ralpr 3677 . . . . . . 7 (∀𝑘 ∈ {∅, 1o} (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
2511, 24bitri 184 . . . . . 6 (∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
269, 25bitr3di 195 . . . . 5 (𝐺 Fn 2o → ((𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵)))
2726pm5.32i 454 . . . 4 ((𝐺 Fn 2o ∧ (𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵))) ↔ (𝐺 Fn 2o ∧ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵)))
28 3anass 984 . . . 4 ((𝐺 Fn 2o𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ (𝐺 Fn 2o ∧ (𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵))))
29 3anass 984 . . . 4 ((𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵) ↔ (𝐺 Fn 2o ∧ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵)))
3027, 28, 293bitr4i 212 . . 3 ((𝐺 Fn 2o𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
312, 30bitri 184 . 2 ((𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
321, 31bitri 184 1 (𝐺X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wne 2367  wral 2475  Vcvv 2763  c0 3450  ifcif 3561  {cpr 3623  ωcom 4626   Fn wfn 5253  cfv 5258  1oc1o 6467  2oc2o 6468  Xcixp 6757  Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1o 6474  df-2o 6475  df-er 6592  df-ixp 6758  df-en 6800  df-fin 6802
This theorem is referenced by:  xpsfrnel2  12989  xpsff1o  12992
  Copyright terms: Public domain W3C validator