ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfrnel GIF version

Theorem xpsfrnel 13046
Description: Elementhood in the target space of the function 𝐹 appearing in xpsval 13054. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
xpsfrnel (𝐺X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺

Proof of Theorem xpsfrnel
StepHypRef Expression
1 elixp2 6770 . 2 (𝐺X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)))
2 3ancoma 987 . . 3 ((𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ (𝐺 Fn 2o𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)))
3 2onn 6588 . . . . . . . . . 10 2o ∈ ω
4 nnfi 6942 . . . . . . . . . 10 (2o ∈ ω → 2o ∈ Fin)
53, 4ax-mp 5 . . . . . . . . 9 2o ∈ Fin
6 fnfi 7011 . . . . . . . . 9 ((𝐺 Fn 2o ∧ 2o ∈ Fin) → 𝐺 ∈ Fin)
75, 6mpan2 425 . . . . . . . 8 (𝐺 Fn 2o𝐺 ∈ Fin)
87elexd 2776 . . . . . . 7 (𝐺 Fn 2o𝐺 ∈ V)
98biantrurd 305 . . . . . 6 (𝐺 Fn 2o → (∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵))))
10 df2o3 6497 . . . . . . . 8 2o = {∅, 1o}
1110raleqi 2697 . . . . . . 7 (∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ ∀𝑘 ∈ {∅, 1o} (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵))
12 0ex 4161 . . . . . . . 8 ∅ ∈ V
13 1oex 6491 . . . . . . . 8 1o ∈ V
14 fveq2 5561 . . . . . . . . 9 (𝑘 = ∅ → (𝐺𝑘) = (𝐺‘∅))
15 iftrue 3567 . . . . . . . . 9 (𝑘 = ∅ → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐴)
1614, 15eleq12d 2267 . . . . . . . 8 (𝑘 = ∅ → ((𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺‘∅) ∈ 𝐴))
17 fveq2 5561 . . . . . . . . 9 (𝑘 = 1o → (𝐺𝑘) = (𝐺‘1o))
18 1n0 6499 . . . . . . . . . . 11 1o ≠ ∅
19 neeq1 2380 . . . . . . . . . . 11 (𝑘 = 1o → (𝑘 ≠ ∅ ↔ 1o ≠ ∅))
2018, 19mpbiri 168 . . . . . . . . . 10 (𝑘 = 1o𝑘 ≠ ∅)
21 ifnefalse 3573 . . . . . . . . . 10 (𝑘 ≠ ∅ → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐵)
2220, 21syl 14 . . . . . . . . 9 (𝑘 = 1o → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐵)
2317, 22eleq12d 2267 . . . . . . . 8 (𝑘 = 1o → ((𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺‘1o) ∈ 𝐵))
2412, 13, 16, 23ralpr 3678 . . . . . . 7 (∀𝑘 ∈ {∅, 1o} (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
2511, 24bitri 184 . . . . . 6 (∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
269, 25bitr3di 195 . . . . 5 (𝐺 Fn 2o → ((𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵)))
2726pm5.32i 454 . . . 4 ((𝐺 Fn 2o ∧ (𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵))) ↔ (𝐺 Fn 2o ∧ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵)))
28 3anass 984 . . . 4 ((𝐺 Fn 2o𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ (𝐺 Fn 2o ∧ (𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵))))
29 3anass 984 . . . 4 ((𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵) ↔ (𝐺 Fn 2o ∧ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵)))
3027, 28, 293bitr4i 212 . . 3 ((𝐺 Fn 2o𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
312, 30bitri 184 . 2 ((𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
321, 31bitri 184 1 (𝐺X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wne 2367  wral 2475  Vcvv 2763  c0 3451  ifcif 3562  {cpr 3624  ωcom 4627   Fn wfn 5254  cfv 5259  1oc1o 6476  2oc2o 6477  Xcixp 6766  Fincfn 6808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-1o 6483  df-2o 6484  df-er 6601  df-ixp 6767  df-en 6809  df-fin 6811
This theorem is referenced by:  xpsfrnel2  13048  xpsff1o  13051
  Copyright terms: Public domain W3C validator