| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 1nq | GIF version | ||
| Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) | 
| Ref | Expression | 
|---|---|
| 1nq | ⊢ 1Q ∈ Q | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1pi 7382 | . . . 4 ⊢ 1o ∈ N | |
| 2 | opelxpi 4695 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → 〈1o, 1o〉 ∈ (N × N)) | |
| 3 | 1, 1, 2 | mp2an 426 | . . 3 ⊢ 〈1o, 1o〉 ∈ (N × N) | 
| 4 | enqex 7427 | . . . 4 ⊢ ~Q ∈ V | |
| 5 | 4 | ecelqsi 6648 | . . 3 ⊢ (〈1o, 1o〉 ∈ (N × N) → [〈1o, 1o〉] ~Q ∈ ((N × N) / ~Q )) | 
| 6 | 3, 5 | ax-mp 5 | . 2 ⊢ [〈1o, 1o〉] ~Q ∈ ((N × N) / ~Q ) | 
| 7 | df-1nqqs 7418 | . 2 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
| 8 | df-nqqs 7415 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
| 9 | 6, 7, 8 | 3eltr4i 2278 | 1 ⊢ 1Q ∈ Q | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 〈cop 3625 × cxp 4661 1oc1o 6467 [cec 6590 / cqs 6591 Ncnpi 7339 ~Q ceq 7346 Qcnq 7347 1Qc1q 7348 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-suc 4406 df-iom 4627 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-1o 6474 df-ec 6594 df-qs 6598 df-ni 7371 df-enq 7414 df-nqqs 7415 df-1nqqs 7418 | 
| This theorem is referenced by: recmulnqg 7458 rec1nq 7462 ltaddnq 7474 halfnqq 7477 addnqprllem 7594 addnqprulem 7595 1pr 7621 addnqpr1 7629 appdivnq 7630 1idprl 7657 1idpru 7658 recexprlemm 7691 recexprlem1ssl 7700 recexprlem1ssu 7701 cauappcvgprlemm 7712 caucvgprlemm 7735 caucvgprprlemmu 7762 suplocexprlemmu 7785 | 
| Copyright terms: Public domain | W3C validator |