| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nq | GIF version | ||
| Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1nq | ⊢ 1Q ∈ Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pi 7435 | . . . 4 ⊢ 1o ∈ N | |
| 2 | opelxpi 4711 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → 〈1o, 1o〉 ∈ (N × N)) | |
| 3 | 1, 1, 2 | mp2an 426 | . . 3 ⊢ 〈1o, 1o〉 ∈ (N × N) |
| 4 | enqex 7480 | . . . 4 ⊢ ~Q ∈ V | |
| 5 | 4 | ecelqsi 6683 | . . 3 ⊢ (〈1o, 1o〉 ∈ (N × N) → [〈1o, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
| 6 | 3, 5 | ax-mp 5 | . 2 ⊢ [〈1o, 1o〉] ~Q ∈ ((N × N) / ~Q ) |
| 7 | df-1nqqs 7471 | . 2 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
| 8 | df-nqqs 7468 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
| 9 | 6, 7, 8 | 3eltr4i 2288 | 1 ⊢ 1Q ∈ Q |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 〈cop 3637 × cxp 4677 1oc1o 6502 [cec 6625 / cqs 6626 Ncnpi 7392 ~Q ceq 7399 Qcnq 7400 1Qc1q 7401 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-suc 4422 df-iom 4643 df-xp 4685 df-cnv 4687 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-1o 6509 df-ec 6629 df-qs 6633 df-ni 7424 df-enq 7467 df-nqqs 7468 df-1nqqs 7471 |
| This theorem is referenced by: recmulnqg 7511 rec1nq 7515 ltaddnq 7527 halfnqq 7530 addnqprllem 7647 addnqprulem 7648 1pr 7674 addnqpr1 7682 appdivnq 7683 1idprl 7710 1idpru 7711 recexprlemm 7744 recexprlem1ssl 7753 recexprlem1ssu 7754 cauappcvgprlemm 7765 caucvgprlemm 7788 caucvgprprlemmu 7815 suplocexprlemmu 7838 |
| Copyright terms: Public domain | W3C validator |