| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nq | GIF version | ||
| Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1nq | ⊢ 1Q ∈ Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pi 7470 | . . . 4 ⊢ 1o ∈ N | |
| 2 | opelxpi 4728 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → 〈1o, 1o〉 ∈ (N × N)) | |
| 3 | 1, 1, 2 | mp2an 426 | . . 3 ⊢ 〈1o, 1o〉 ∈ (N × N) |
| 4 | enqex 7515 | . . . 4 ⊢ ~Q ∈ V | |
| 5 | 4 | ecelqsi 6706 | . . 3 ⊢ (〈1o, 1o〉 ∈ (N × N) → [〈1o, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
| 6 | 3, 5 | ax-mp 5 | . 2 ⊢ [〈1o, 1o〉] ~Q ∈ ((N × N) / ~Q ) |
| 7 | df-1nqqs 7506 | . 2 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
| 8 | df-nqqs 7503 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
| 9 | 6, 7, 8 | 3eltr4i 2291 | 1 ⊢ 1Q ∈ Q |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 〈cop 3649 × cxp 4694 1oc1o 6525 [cec 6648 / cqs 6649 Ncnpi 7427 ~Q ceq 7434 Qcnq 7435 1Qc1q 7436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-suc 4439 df-iom 4660 df-xp 4702 df-cnv 4704 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-1o 6532 df-ec 6652 df-qs 6656 df-ni 7459 df-enq 7502 df-nqqs 7503 df-1nqqs 7506 |
| This theorem is referenced by: recmulnqg 7546 rec1nq 7550 ltaddnq 7562 halfnqq 7565 addnqprllem 7682 addnqprulem 7683 1pr 7709 addnqpr1 7717 appdivnq 7718 1idprl 7745 1idpru 7746 recexprlemm 7779 recexprlem1ssl 7788 recexprlem1ssu 7789 cauappcvgprlemm 7800 caucvgprlemm 7823 caucvgprprlemmu 7850 suplocexprlemmu 7873 |
| Copyright terms: Public domain | W3C validator |