Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1nq | GIF version |
Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1nq | ⊢ 1Q ∈ Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pi 7256 | . . . 4 ⊢ 1o ∈ N | |
2 | opelxpi 4636 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → 〈1o, 1o〉 ∈ (N × N)) | |
3 | 1, 1, 2 | mp2an 423 | . . 3 ⊢ 〈1o, 1o〉 ∈ (N × N) |
4 | enqex 7301 | . . . 4 ⊢ ~Q ∈ V | |
5 | 4 | ecelqsi 6555 | . . 3 ⊢ (〈1o, 1o〉 ∈ (N × N) → [〈1o, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
6 | 3, 5 | ax-mp 5 | . 2 ⊢ [〈1o, 1o〉] ~Q ∈ ((N × N) / ~Q ) |
7 | df-1nqqs 7292 | . 2 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
8 | df-nqqs 7289 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
9 | 6, 7, 8 | 3eltr4i 2248 | 1 ⊢ 1Q ∈ Q |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 〈cop 3579 × cxp 4602 1oc1o 6377 [cec 6499 / cqs 6500 Ncnpi 7213 ~Q ceq 7220 Qcnq 7221 1Qc1q 7222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-suc 4349 df-iom 4568 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-1o 6384 df-ec 6503 df-qs 6507 df-ni 7245 df-enq 7288 df-nqqs 7289 df-1nqqs 7292 |
This theorem is referenced by: recmulnqg 7332 rec1nq 7336 ltaddnq 7348 halfnqq 7351 addnqprllem 7468 addnqprulem 7469 1pr 7495 addnqpr1 7503 appdivnq 7504 1idprl 7531 1idpru 7532 recexprlemm 7565 recexprlem1ssl 7574 recexprlem1ssu 7575 cauappcvgprlemm 7586 caucvgprlemm 7609 caucvgprprlemmu 7636 suplocexprlemmu 7659 |
Copyright terms: Public domain | W3C validator |