Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1nq | GIF version |
Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1nq | ⊢ 1Q ∈ Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pi 7289 | . . . 4 ⊢ 1o ∈ N | |
2 | opelxpi 4652 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → 〈1o, 1o〉 ∈ (N × N)) | |
3 | 1, 1, 2 | mp2an 426 | . . 3 ⊢ 〈1o, 1o〉 ∈ (N × N) |
4 | enqex 7334 | . . . 4 ⊢ ~Q ∈ V | |
5 | 4 | ecelqsi 6579 | . . 3 ⊢ (〈1o, 1o〉 ∈ (N × N) → [〈1o, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
6 | 3, 5 | ax-mp 5 | . 2 ⊢ [〈1o, 1o〉] ~Q ∈ ((N × N) / ~Q ) |
7 | df-1nqqs 7325 | . 2 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
8 | df-nqqs 7322 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
9 | 6, 7, 8 | 3eltr4i 2257 | 1 ⊢ 1Q ∈ Q |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2146 〈cop 3592 × cxp 4618 1oc1o 6400 [cec 6523 / cqs 6524 Ncnpi 7246 ~Q ceq 7253 Qcnq 7254 1Qc1q 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-suc 4365 df-iom 4584 df-xp 4626 df-cnv 4628 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-1o 6407 df-ec 6527 df-qs 6531 df-ni 7278 df-enq 7321 df-nqqs 7322 df-1nqqs 7325 |
This theorem is referenced by: recmulnqg 7365 rec1nq 7369 ltaddnq 7381 halfnqq 7384 addnqprllem 7501 addnqprulem 7502 1pr 7528 addnqpr1 7536 appdivnq 7537 1idprl 7564 1idpru 7565 recexprlemm 7598 recexprlem1ssl 7607 recexprlem1ssu 7608 cauappcvgprlemm 7619 caucvgprlemm 7642 caucvgprprlemmu 7669 suplocexprlemmu 7692 |
Copyright terms: Public domain | W3C validator |