![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1nq | GIF version |
Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1nq | ⊢ 1Q ∈ Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pi 7314 | . . . 4 ⊢ 1o ∈ N | |
2 | opelxpi 4659 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → ⟨1o, 1o⟩ ∈ (N × N)) | |
3 | 1, 1, 2 | mp2an 426 | . . 3 ⊢ ⟨1o, 1o⟩ ∈ (N × N) |
4 | enqex 7359 | . . . 4 ⊢ ~Q ∈ V | |
5 | 4 | ecelqsi 6589 | . . 3 ⊢ (⟨1o, 1o⟩ ∈ (N × N) → [⟨1o, 1o⟩] ~Q ∈ ((N × N) / ~Q )) |
6 | 3, 5 | ax-mp 5 | . 2 ⊢ [⟨1o, 1o⟩] ~Q ∈ ((N × N) / ~Q ) |
7 | df-1nqqs 7350 | . 2 ⊢ 1Q = [⟨1o, 1o⟩] ~Q | |
8 | df-nqqs 7347 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
9 | 6, 7, 8 | 3eltr4i 2259 | 1 ⊢ 1Q ∈ Q |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 ⟨cop 3596 × cxp 4625 1oc1o 6410 [cec 6533 / cqs 6534 Ncnpi 7271 ~Q ceq 7278 Qcnq 7279 1Qc1q 7280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-iinf 4588 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2740 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-suc 4372 df-iom 4591 df-xp 4633 df-cnv 4635 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-1o 6417 df-ec 6537 df-qs 6541 df-ni 7303 df-enq 7346 df-nqqs 7347 df-1nqqs 7350 |
This theorem is referenced by: recmulnqg 7390 rec1nq 7394 ltaddnq 7406 halfnqq 7409 addnqprllem 7526 addnqprulem 7527 1pr 7553 addnqpr1 7561 appdivnq 7562 1idprl 7589 1idpru 7590 recexprlemm 7623 recexprlem1ssl 7632 recexprlem1ssu 7633 cauappcvgprlemm 7644 caucvgprlemm 7667 caucvgprprlemmu 7694 suplocexprlemmu 7717 |
Copyright terms: Public domain | W3C validator |