Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1nq | GIF version |
Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1nq | ⊢ 1Q ∈ Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pi 7218 | . . . 4 ⊢ 1o ∈ N | |
2 | opelxpi 4615 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → 〈1o, 1o〉 ∈ (N × N)) | |
3 | 1, 1, 2 | mp2an 423 | . . 3 ⊢ 〈1o, 1o〉 ∈ (N × N) |
4 | enqex 7263 | . . . 4 ⊢ ~Q ∈ V | |
5 | 4 | ecelqsi 6527 | . . 3 ⊢ (〈1o, 1o〉 ∈ (N × N) → [〈1o, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
6 | 3, 5 | ax-mp 5 | . 2 ⊢ [〈1o, 1o〉] ~Q ∈ ((N × N) / ~Q ) |
7 | df-1nqqs 7254 | . 2 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
8 | df-nqqs 7251 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
9 | 6, 7, 8 | 3eltr4i 2239 | 1 ⊢ 1Q ∈ Q |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2128 〈cop 3563 × cxp 4581 1oc1o 6350 [cec 6471 / cqs 6472 Ncnpi 7175 ~Q ceq 7182 Qcnq 7183 1Qc1q 7184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-suc 4330 df-iom 4548 df-xp 4589 df-cnv 4591 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-1o 6357 df-ec 6475 df-qs 6479 df-ni 7207 df-enq 7250 df-nqqs 7251 df-1nqqs 7254 |
This theorem is referenced by: recmulnqg 7294 rec1nq 7298 ltaddnq 7310 halfnqq 7313 addnqprllem 7430 addnqprulem 7431 1pr 7457 addnqpr1 7465 appdivnq 7466 1idprl 7493 1idpru 7494 recexprlemm 7527 recexprlem1ssl 7536 recexprlem1ssu 7537 cauappcvgprlemm 7548 caucvgprlemm 7571 caucvgprprlemmu 7598 suplocexprlemmu 7621 |
Copyright terms: Public domain | W3C validator |