| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltri | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeltr.1 | ⊢ 𝐴 = 𝐵 |
| eqeltr.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltri | ⊢ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltr.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 2 | eqeltr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | eleq1i 2270 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ 𝐴 ∈ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: eqeltrri 2278 3eltr4i 2286 intab 3913 inex2 4178 vpwex 4222 ord3ex 4233 uniopel 4299 onsucelsucexmid 4576 nnpredcl 4669 elvvuni 4737 isarep2 5355 acexmidlemcase 5929 abrexex2 6199 oprabex 6203 oprabrexex2 6205 mpoexw 6289 rdg0 6463 frecex 6470 1on 6499 2on 6501 3on 6503 4on 6504 1onn 6596 2onn 6597 3onn 6598 4onn 6599 mapsnf1o2 6773 exmidpw 6987 exmidpw2en 6991 unfiexmid 6997 xpfi 7011 ssfirab 7015 fnfi 7020 iunfidisj 7030 fidcenumlemr 7039 sbthlemi10 7050 ctmlemr 7192 nninfex 7205 exmidonfinlem 7283 acfun 7301 exmidaclem 7302 pw1ne1 7323 ccfunen 7358 nqex 7458 nq0ex 7535 1pr 7649 ltexprlempr 7703 recexprlempr 7727 cauappcvgprlemcl 7748 caucvgprlemcl 7771 caucvgprprlemcl 7799 addvalex 7939 peano1nnnn 7947 peano2nnnn 7948 axcnex 7954 ax1cn 7956 ax1re 7957 pnfxr 8107 mnfxr 8111 inelr 8639 cju 9016 2re 9088 3re 9092 4re 9095 5re 9097 6re 9099 7re 9101 8re 9103 9re 9105 2nn 9180 3nn 9181 4nn 9182 5nn 9183 6nn 9184 7nn 9185 8nn 9186 9nn 9187 nn0ex 9283 nneoor 9457 zeo 9460 deccl 9500 decnncl 9505 numnncl2 9508 decnncl2 9509 numsucc 9525 numma2c 9531 numadd 9532 numaddc 9533 nummul1c 9534 nummul2c 9535 xnegcl 9936 xrex 9960 ioof 10075 uzennn 10562 xnn0nnen 10563 seqex 10575 m1expcl2 10687 faccl 10861 facwordi 10866 faclbnd2 10868 bccl 10893 crre 11087 remim 11090 absval 11231 climle 11564 climcvg1nlem 11579 iserabs 11705 geo2lim 11746 prodfclim1 11774 fprodle 11870 ere 11900 ege2le3 11901 eftlub 11920 efsep 11921 tan0 11961 ef01bndlem 11986 nn0o 12137 pczpre 12539 pockthi 12600 igz 12616 ennnfonelemj0 12691 ennnfonelem0 12695 ndxarg 12774 ndxslid 12776 strndxid 12779 basendxnn 12807 strle1g 12857 plusgndxnn 12862 2strbasg 12870 2stropg 12871 tsetndxnn 12939 plendxnn 12953 dsndxnn 12968 unifndxnn 12978 rmodislmodlem 14030 rmodislmod 14031 cndsex 14233 znval 14316 znle 14317 znbaslemnn 14319 znbas 14324 znzrhval 14327 psrval 14346 fczpsrbag 14351 setsmsbasg 14869 cnbl0 14924 cnopncntop 14934 cnopn 14935 remet 14938 divcnap 14955 expcn 14959 climcncf 14974 idcncf 14991 expcncf 14999 cnrehmeocntop 15000 hovercncf 15036 plyrecj 15153 sincn 15159 coscn 15160 2logb9irrALT 15364 2irrexpq 15366 2irrexpqap 15368 lgslem4 15398 lgsdir2lem2 15424 bdinex2 15700 bj-inex 15707 012of 15794 2o01f 15795 peano3nninf 15808 cvgcmp2nlemabs 15835 trilpolemisumle 15841 |
| Copyright terms: Public domain | W3C validator |