![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeltri | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeltr.1 | ⊢ 𝐴 = 𝐵 |
eqeltr.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltri | ⊢ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltr.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
2 | eqeltr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | eleq1i 2243 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
4 | 1, 3 | mpbir 146 | 1 ⊢ 𝐴 ∈ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 |
This theorem is referenced by: eqeltrri 2251 3eltr4i 2259 intab 3875 inex2 4140 vpwex 4181 ord3ex 4192 uniopel 4258 onsucelsucexmid 4531 nnpredcl 4624 elvvuni 4692 isarep2 5305 acexmidlemcase 5873 abrexex2 6128 oprabex 6132 oprabrexex2 6134 mpoexw 6217 rdg0 6391 frecex 6398 1on 6427 2on 6429 3on 6431 4on 6432 1onn 6524 2onn 6525 3onn 6526 4onn 6527 mapsnf1o2 6699 exmidpw 6911 unfiexmid 6920 xpfi 6932 ssfirab 6936 fnfi 6939 iunfidisj 6948 fidcenumlemr 6957 sbthlemi10 6968 ctmlemr 7110 nninfex 7123 exmidonfinlem 7195 acfun 7209 exmidaclem 7210 pw1ne1 7231 ccfunen 7266 nqex 7365 nq0ex 7442 1pr 7556 ltexprlempr 7610 recexprlempr 7634 cauappcvgprlemcl 7655 caucvgprlemcl 7678 caucvgprprlemcl 7706 addvalex 7846 peano1nnnn 7854 peano2nnnn 7855 axcnex 7861 ax1cn 7863 ax1re 7864 pnfxr 8013 mnfxr 8017 inelr 8544 cju 8921 2re 8992 3re 8996 4re 8999 5re 9001 6re 9003 7re 9005 8re 9007 9re 9009 2nn 9083 3nn 9084 4nn 9085 5nn 9086 6nn 9087 7nn 9088 8nn 9089 9nn 9090 nn0ex 9185 nneoor 9358 zeo 9361 deccl 9401 decnncl 9406 numnncl2 9409 decnncl2 9410 numsucc 9426 numma2c 9432 numadd 9433 numaddc 9434 nummul1c 9435 nummul2c 9436 xnegcl 9835 xrex 9859 ioof 9974 uzennn 10439 seqex 10450 m1expcl2 10545 faccl 10718 facwordi 10723 faclbnd2 10725 bccl 10750 crre 10869 remim 10872 absval 11013 climle 11345 climcvg1nlem 11360 iserabs 11486 geo2lim 11527 prodfclim1 11555 fprodle 11651 ere 11681 ege2le3 11682 eftlub 11701 efsep 11702 tan0 11742 ef01bndlem 11767 nn0o 11915 pczpre 12300 pockthi 12359 igz 12375 ennnfonelemj0 12405 ennnfonelem0 12409 ndxarg 12488 ndxslid 12490 strndxid 12493 basendxnn 12521 strle1g 12568 plusgndxnn 12573 2strbasg 12581 2stropg 12582 tsetndxnn 12650 plendxnn 12664 dsndxnn 12675 unifndxnn 12685 rmodislmodlem 13451 rmodislmod 13452 setsmsbasg 14140 cnbl0 14195 cnopncntop 14198 remet 14201 divcnap 14216 climcncf 14232 expcncf 14253 cnrehmeocntop 14254 sincn 14351 coscn 14352 2logb9irrALT 14553 2irrexpq 14555 2irrexpqap 14557 lgslem4 14565 lgsdir2lem2 14591 bdinex2 14813 bj-inex 14820 012of 14907 2o01f 14908 peano3nninf 14918 cvgcmp2nlemabs 14942 trilpolemisumle 14948 |
Copyright terms: Public domain | W3C validator |