| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltri | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeltr.1 | ⊢ 𝐴 = 𝐵 |
| eqeltr.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltri | ⊢ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltr.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 2 | eqeltr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | eleq1i 2295 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ 𝐴 ∈ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: eqeltrri 2303 3eltr4i 2311 intab 3951 inex2 4218 vpwex 4262 ord3ex 4273 uniopel 4342 onsucelsucexmid 4621 nnpredcl 4714 elvvuni 4782 isarep2 5407 acexmidlemcase 5995 abrexex2 6267 oprabex 6271 oprabrexex2 6273 mpoexw 6357 rdg0 6531 frecex 6538 1on 6567 2on 6569 3on 6571 4on 6572 1onn 6664 2onn 6665 3onn 6666 4onn 6667 mapsnf1o2 6841 exmidpw 7066 exmidpw2en 7070 unfiexmid 7076 xpfi 7090 ssfirab 7094 fnfi 7099 iunfidisj 7109 fidcenumlemr 7118 sbthlemi10 7129 ctmlemr 7271 nninfex 7284 exmidonfinlem 7367 acfun 7385 exmidaclem 7386 pw1ne1 7410 ccfunen 7446 nqex 7546 nq0ex 7623 1pr 7737 ltexprlempr 7791 recexprlempr 7815 cauappcvgprlemcl 7836 caucvgprlemcl 7859 caucvgprprlemcl 7887 addvalex 8027 peano1nnnn 8035 peano2nnnn 8036 axcnex 8042 ax1cn 8044 ax1re 8045 pnfxr 8195 mnfxr 8199 inelr 8727 cju 9104 2re 9176 3re 9180 4re 9183 5re 9185 6re 9187 7re 9189 8re 9191 9re 9193 2nn 9268 3nn 9269 4nn 9270 5nn 9271 6nn 9272 7nn 9273 8nn 9274 9nn 9275 nn0ex 9371 nneoor 9545 zeo 9548 deccl 9588 decnncl 9593 numnncl2 9596 decnncl2 9597 numsucc 9613 numma2c 9619 numadd 9620 numaddc 9621 nummul1c 9622 nummul2c 9623 xnegcl 10024 xrex 10048 ioof 10163 uzennn 10653 xnn0nnen 10654 seqex 10666 m1expcl2 10778 faccl 10952 facwordi 10957 faclbnd2 10959 bccl 10984 lswex 11118 crre 11363 remim 11366 absval 11507 climle 11840 climcvg1nlem 11855 iserabs 11981 geo2lim 12022 prodfclim1 12050 fprodle 12146 ere 12176 ege2le3 12177 eftlub 12196 efsep 12197 tan0 12237 ef01bndlem 12262 nn0o 12413 pczpre 12815 pockthi 12876 igz 12892 ennnfonelemj0 12967 ennnfonelem0 12971 ndxarg 13050 ndxslid 13052 strndxid 13055 basendxnn 13083 strle1g 13134 plusgndxnn 13139 2strbasg 13148 2stropg 13149 tsetndxnn 13217 plendxnn 13231 dsndxnn 13246 unifndxnn 13256 rmodislmodlem 14308 rmodislmod 14309 cndsex 14511 znval 14594 znle 14595 znbaslemnn 14597 znbas 14602 znzrhval 14605 psrval 14624 fczpsrbag 14629 setsmsbasg 15147 cnbl0 15202 cnopncntop 15212 cnopn 15213 remet 15216 divcnap 15233 expcn 15237 climcncf 15252 idcncf 15269 expcncf 15277 cnrehmeocntop 15278 hovercncf 15314 plyrecj 15431 sincn 15437 coscn 15438 2logb9irrALT 15642 2irrexpq 15644 2irrexpqap 15646 lgslem4 15676 lgsdir2lem2 15702 edgfndxnn 15803 setsvtx 15846 usgrstrrepeen 16023 bdinex2 16221 bj-inex 16228 012of 16316 2o01f 16317 peano3nninf 16332 cvgcmp2nlemabs 16359 trilpolemisumle 16365 |
| Copyright terms: Public domain | W3C validator |