Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeltri | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeltr.1 | ⊢ 𝐴 = 𝐵 |
eqeltr.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltri | ⊢ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltr.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
2 | eqeltr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | eleq1i 2223 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
4 | 1, 3 | mpbir 145 | 1 ⊢ 𝐴 ∈ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ∈ wcel 2128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-17 1506 ax-ial 1514 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 df-clel 2153 |
This theorem is referenced by: eqeltrri 2231 3eltr4i 2239 intab 3836 inex2 4099 vpwex 4139 ord3ex 4150 uniopel 4215 onsucelsucexmid 4487 nnpredcl 4580 elvvuni 4647 isarep2 5254 acexmidlemcase 5813 abrexex2 6066 oprabex 6070 oprabrexex2 6072 rdg0 6328 frecex 6335 1on 6364 2on 6366 3on 6368 4on 6369 1onn 6460 2onn 6461 3onn 6462 4onn 6463 mapsnf1o2 6634 exmidpw 6846 unfiexmid 6855 xpfi 6867 ssfirab 6871 fnfi 6874 iunfidisj 6883 fidcenumlemr 6892 sbthlemi10 6903 ctmlemr 7042 nninfex 7055 exmidonfinlem 7111 acfun 7125 exmidaclem 7126 pw1ne1 7147 ccfunen 7167 nqex 7266 nq0ex 7343 1pr 7457 ltexprlempr 7511 recexprlempr 7535 cauappcvgprlemcl 7556 caucvgprlemcl 7579 caucvgprprlemcl 7607 addvalex 7747 peano1nnnn 7755 peano2nnnn 7756 axcnex 7762 ax1cn 7764 ax1re 7765 pnfxr 7913 mnfxr 7917 inelr 8442 cju 8815 2re 8886 3re 8890 4re 8893 5re 8895 6re 8897 7re 8899 8re 8901 9re 8903 2nn 8977 3nn 8978 4nn 8979 5nn 8980 6nn 8981 7nn 8982 8nn 8983 9nn 8984 nn0ex 9079 nneoor 9249 zeo 9252 deccl 9292 decnncl 9297 numnncl2 9300 decnncl2 9301 numsucc 9317 numma2c 9323 numadd 9324 numaddc 9325 nummul1c 9326 nummul2c 9327 xnegcl 9718 xrex 9742 ioof 9857 uzennn 10317 seqex 10328 m1expcl2 10423 faccl 10591 facwordi 10596 faclbnd2 10598 bccl 10623 crre 10739 remim 10742 absval 10883 climle 11213 climcvg1nlem 11228 iserabs 11354 geo2lim 11395 prodfclim1 11423 fprodle 11519 ere 11549 ege2le3 11550 eftlub 11569 efsep 11570 tan0 11610 ef01bndlem 11635 nn0o 11779 ennnfonelemj0 12102 ennnfonelem0 12106 ndxarg 12173 ndxslid 12175 strndxid 12178 basendxnn 12205 strle1g 12240 2strbasg 12251 2stropg 12252 setsmsbasg 12839 cnbl0 12894 cnopncntop 12897 remet 12900 divcnap 12915 climcncf 12931 expcncf 12952 cnrehmeocntop 12953 sincn 13050 coscn 13051 2logb9irrALT 13251 2irrexpq 13253 2irrexpqap 13255 bdinex2 13435 bj-inex 13442 012of 13528 2o01f 13529 peano3nninf 13541 cvgcmp2nlemabs 13566 trilpolemisumle 13572 |
Copyright terms: Public domain | W3C validator |