| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltri | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeltr.1 | ⊢ 𝐴 = 𝐵 |
| eqeltr.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltri | ⊢ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltr.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 2 | eqeltr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | eleq1i 2272 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ 𝐴 ∈ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-clel 2202 |
| This theorem is referenced by: eqeltrri 2280 3eltr4i 2288 intab 3920 inex2 4187 vpwex 4231 ord3ex 4242 uniopel 4309 onsucelsucexmid 4586 nnpredcl 4679 elvvuni 4747 isarep2 5370 acexmidlemcase 5952 abrexex2 6222 oprabex 6226 oprabrexex2 6228 mpoexw 6312 rdg0 6486 frecex 6493 1on 6522 2on 6524 3on 6526 4on 6527 1onn 6619 2onn 6620 3onn 6621 4onn 6622 mapsnf1o2 6796 exmidpw 7020 exmidpw2en 7024 unfiexmid 7030 xpfi 7044 ssfirab 7048 fnfi 7053 iunfidisj 7063 fidcenumlemr 7072 sbthlemi10 7083 ctmlemr 7225 nninfex 7238 exmidonfinlem 7317 acfun 7335 exmidaclem 7336 pw1ne1 7360 ccfunen 7396 nqex 7496 nq0ex 7573 1pr 7687 ltexprlempr 7741 recexprlempr 7765 cauappcvgprlemcl 7786 caucvgprlemcl 7809 caucvgprprlemcl 7837 addvalex 7977 peano1nnnn 7985 peano2nnnn 7986 axcnex 7992 ax1cn 7994 ax1re 7995 pnfxr 8145 mnfxr 8149 inelr 8677 cju 9054 2re 9126 3re 9130 4re 9133 5re 9135 6re 9137 7re 9139 8re 9141 9re 9143 2nn 9218 3nn 9219 4nn 9220 5nn 9221 6nn 9222 7nn 9223 8nn 9224 9nn 9225 nn0ex 9321 nneoor 9495 zeo 9498 deccl 9538 decnncl 9543 numnncl2 9546 decnncl2 9547 numsucc 9563 numma2c 9569 numadd 9570 numaddc 9571 nummul1c 9572 nummul2c 9573 xnegcl 9974 xrex 9998 ioof 10113 uzennn 10603 xnn0nnen 10604 seqex 10616 m1expcl2 10728 faccl 10902 facwordi 10907 faclbnd2 10909 bccl 10934 lswex 11067 crre 11243 remim 11246 absval 11387 climle 11720 climcvg1nlem 11735 iserabs 11861 geo2lim 11902 prodfclim1 11930 fprodle 12026 ere 12056 ege2le3 12057 eftlub 12076 efsep 12077 tan0 12117 ef01bndlem 12142 nn0o 12293 pczpre 12695 pockthi 12756 igz 12772 ennnfonelemj0 12847 ennnfonelem0 12851 ndxarg 12930 ndxslid 12932 strndxid 12935 basendxnn 12963 strle1g 13013 plusgndxnn 13018 2strbasg 13027 2stropg 13028 tsetndxnn 13096 plendxnn 13110 dsndxnn 13125 unifndxnn 13135 rmodislmodlem 14187 rmodislmod 14188 cndsex 14390 znval 14473 znle 14474 znbaslemnn 14476 znbas 14481 znzrhval 14484 psrval 14503 fczpsrbag 14508 setsmsbasg 15026 cnbl0 15081 cnopncntop 15091 cnopn 15092 remet 15095 divcnap 15112 expcn 15116 climcncf 15131 idcncf 15148 expcncf 15156 cnrehmeocntop 15157 hovercncf 15193 plyrecj 15310 sincn 15316 coscn 15317 2logb9irrALT 15521 2irrexpq 15523 2irrexpqap 15525 lgslem4 15555 lgsdir2lem2 15581 edgfndxnn 15682 bdinex2 15974 bj-inex 15981 012of 16069 2o01f 16070 peano3nninf 16085 cvgcmp2nlemabs 16112 trilpolemisumle 16118 |
| Copyright terms: Public domain | W3C validator |