Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeltri | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeltr.1 | ⊢ 𝐴 = 𝐵 |
eqeltr.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltri | ⊢ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltr.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
2 | eqeltr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | eleq1i 2236 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
4 | 1, 3 | mpbir 145 | 1 ⊢ 𝐴 ∈ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: eqeltrri 2244 3eltr4i 2252 intab 3860 inex2 4124 vpwex 4165 ord3ex 4176 uniopel 4241 onsucelsucexmid 4514 nnpredcl 4607 elvvuni 4675 isarep2 5285 acexmidlemcase 5848 abrexex2 6103 oprabex 6107 oprabrexex2 6109 mpoexw 6192 rdg0 6366 frecex 6373 1on 6402 2on 6404 3on 6406 4on 6407 1onn 6499 2onn 6500 3onn 6501 4onn 6502 mapsnf1o2 6674 exmidpw 6886 unfiexmid 6895 xpfi 6907 ssfirab 6911 fnfi 6914 iunfidisj 6923 fidcenumlemr 6932 sbthlemi10 6943 ctmlemr 7085 nninfex 7098 exmidonfinlem 7170 acfun 7184 exmidaclem 7185 pw1ne1 7206 ccfunen 7226 nqex 7325 nq0ex 7402 1pr 7516 ltexprlempr 7570 recexprlempr 7594 cauappcvgprlemcl 7615 caucvgprlemcl 7638 caucvgprprlemcl 7666 addvalex 7806 peano1nnnn 7814 peano2nnnn 7815 axcnex 7821 ax1cn 7823 ax1re 7824 pnfxr 7972 mnfxr 7976 inelr 8503 cju 8877 2re 8948 3re 8952 4re 8955 5re 8957 6re 8959 7re 8961 8re 8963 9re 8965 2nn 9039 3nn 9040 4nn 9041 5nn 9042 6nn 9043 7nn 9044 8nn 9045 9nn 9046 nn0ex 9141 nneoor 9314 zeo 9317 deccl 9357 decnncl 9362 numnncl2 9365 decnncl2 9366 numsucc 9382 numma2c 9388 numadd 9389 numaddc 9390 nummul1c 9391 nummul2c 9392 xnegcl 9789 xrex 9813 ioof 9928 uzennn 10392 seqex 10403 m1expcl2 10498 faccl 10669 facwordi 10674 faclbnd2 10676 bccl 10701 crre 10821 remim 10824 absval 10965 climle 11297 climcvg1nlem 11312 iserabs 11438 geo2lim 11479 prodfclim1 11507 fprodle 11603 ere 11633 ege2le3 11634 eftlub 11653 efsep 11654 tan0 11694 ef01bndlem 11719 nn0o 11866 pczpre 12251 pockthi 12310 igz 12326 ennnfonelemj0 12356 ennnfonelem0 12360 ndxarg 12439 ndxslid 12441 strndxid 12444 basendxnn 12471 strle1g 12508 2strbasg 12519 2stropg 12520 setsmsbasg 13273 cnbl0 13328 cnopncntop 13331 remet 13334 divcnap 13349 climcncf 13365 expcncf 13386 cnrehmeocntop 13387 sincn 13484 coscn 13485 2logb9irrALT 13686 2irrexpq 13688 2irrexpqap 13690 lgslem4 13698 lgsdir2lem2 13724 bdinex2 13935 bj-inex 13942 012of 14028 2o01f 14029 peano3nninf 14040 cvgcmp2nlemabs 14064 trilpolemisumle 14070 |
Copyright terms: Public domain | W3C validator |