| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltri | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeltr.1 | ⊢ 𝐴 = 𝐵 |
| eqeltr.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltri | ⊢ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltr.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 2 | eqeltr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | eleq1i 2270 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ 𝐴 ∈ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: eqeltrri 2278 3eltr4i 2286 intab 3913 inex2 4178 vpwex 4222 ord3ex 4233 uniopel 4300 onsucelsucexmid 4577 nnpredcl 4670 elvvuni 4738 isarep2 5360 acexmidlemcase 5938 abrexex2 6208 oprabex 6212 oprabrexex2 6214 mpoexw 6298 rdg0 6472 frecex 6479 1on 6508 2on 6510 3on 6512 4on 6513 1onn 6605 2onn 6606 3onn 6607 4onn 6608 mapsnf1o2 6782 exmidpw 7004 exmidpw2en 7008 unfiexmid 7014 xpfi 7028 ssfirab 7032 fnfi 7037 iunfidisj 7047 fidcenumlemr 7056 sbthlemi10 7067 ctmlemr 7209 nninfex 7222 exmidonfinlem 7300 acfun 7318 exmidaclem 7319 pw1ne1 7340 ccfunen 7375 nqex 7475 nq0ex 7552 1pr 7666 ltexprlempr 7720 recexprlempr 7744 cauappcvgprlemcl 7765 caucvgprlemcl 7788 caucvgprprlemcl 7816 addvalex 7956 peano1nnnn 7964 peano2nnnn 7965 axcnex 7971 ax1cn 7973 ax1re 7974 pnfxr 8124 mnfxr 8128 inelr 8656 cju 9033 2re 9105 3re 9109 4re 9112 5re 9114 6re 9116 7re 9118 8re 9120 9re 9122 2nn 9197 3nn 9198 4nn 9199 5nn 9200 6nn 9201 7nn 9202 8nn 9203 9nn 9204 nn0ex 9300 nneoor 9474 zeo 9477 deccl 9517 decnncl 9522 numnncl2 9525 decnncl2 9526 numsucc 9542 numma2c 9548 numadd 9549 numaddc 9550 nummul1c 9551 nummul2c 9552 xnegcl 9953 xrex 9977 ioof 10092 uzennn 10579 xnn0nnen 10580 seqex 10592 m1expcl2 10704 faccl 10878 facwordi 10883 faclbnd2 10885 bccl 10910 crre 11110 remim 11113 absval 11254 climle 11587 climcvg1nlem 11602 iserabs 11728 geo2lim 11769 prodfclim1 11797 fprodle 11893 ere 11923 ege2le3 11924 eftlub 11943 efsep 11944 tan0 11984 ef01bndlem 12009 nn0o 12160 pczpre 12562 pockthi 12623 igz 12639 ennnfonelemj0 12714 ennnfonelem0 12718 ndxarg 12797 ndxslid 12799 strndxid 12802 basendxnn 12830 strle1g 12880 plusgndxnn 12885 2strbasg 12894 2stropg 12895 tsetndxnn 12963 plendxnn 12977 dsndxnn 12992 unifndxnn 13002 rmodislmodlem 14054 rmodislmod 14055 cndsex 14257 znval 14340 znle 14341 znbaslemnn 14343 znbas 14348 znzrhval 14351 psrval 14370 fczpsrbag 14375 setsmsbasg 14893 cnbl0 14948 cnopncntop 14958 cnopn 14959 remet 14962 divcnap 14979 expcn 14983 climcncf 14998 idcncf 15015 expcncf 15023 cnrehmeocntop 15024 hovercncf 15060 plyrecj 15177 sincn 15183 coscn 15184 2logb9irrALT 15388 2irrexpq 15390 2irrexpqap 15392 lgslem4 15422 lgsdir2lem2 15448 edgfndxnn 15549 bdinex2 15769 bj-inex 15776 012of 15863 2o01f 15864 peano3nninf 15877 cvgcmp2nlemabs 15904 trilpolemisumle 15910 |
| Copyright terms: Public domain | W3C validator |