| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltri | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeltr.1 | ⊢ 𝐴 = 𝐵 |
| eqeltr.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltri | ⊢ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltr.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 2 | eqeltr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | eleq1i 2262 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ 𝐴 ∈ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: eqeltrri 2270 3eltr4i 2278 intab 3904 inex2 4169 vpwex 4213 ord3ex 4224 uniopel 4290 onsucelsucexmid 4567 nnpredcl 4660 elvvuni 4728 isarep2 5346 acexmidlemcase 5920 abrexex2 6190 oprabex 6194 oprabrexex2 6196 mpoexw 6280 rdg0 6454 frecex 6461 1on 6490 2on 6492 3on 6494 4on 6495 1onn 6587 2onn 6588 3onn 6589 4onn 6590 mapsnf1o2 6764 exmidpw 6978 exmidpw2en 6982 unfiexmid 6988 xpfi 7002 ssfirab 7006 fnfi 7011 iunfidisj 7021 fidcenumlemr 7030 sbthlemi10 7041 ctmlemr 7183 nninfex 7196 exmidonfinlem 7274 acfun 7292 exmidaclem 7293 pw1ne1 7314 ccfunen 7349 nqex 7449 nq0ex 7526 1pr 7640 ltexprlempr 7694 recexprlempr 7718 cauappcvgprlemcl 7739 caucvgprlemcl 7762 caucvgprprlemcl 7790 addvalex 7930 peano1nnnn 7938 peano2nnnn 7939 axcnex 7945 ax1cn 7947 ax1re 7948 pnfxr 8098 mnfxr 8102 inelr 8630 cju 9007 2re 9079 3re 9083 4re 9086 5re 9088 6re 9090 7re 9092 8re 9094 9re 9096 2nn 9171 3nn 9172 4nn 9173 5nn 9174 6nn 9175 7nn 9176 8nn 9177 9nn 9178 nn0ex 9274 nneoor 9447 zeo 9450 deccl 9490 decnncl 9495 numnncl2 9498 decnncl2 9499 numsucc 9515 numma2c 9521 numadd 9522 numaddc 9523 nummul1c 9524 nummul2c 9525 xnegcl 9926 xrex 9950 ioof 10065 uzennn 10547 xnn0nnen 10548 seqex 10560 m1expcl2 10672 faccl 10846 facwordi 10851 faclbnd2 10853 bccl 10878 crre 11041 remim 11044 absval 11185 climle 11518 climcvg1nlem 11533 iserabs 11659 geo2lim 11700 prodfclim1 11728 fprodle 11824 ere 11854 ege2le3 11855 eftlub 11874 efsep 11875 tan0 11915 ef01bndlem 11940 nn0o 12091 pczpre 12493 pockthi 12554 igz 12570 ennnfonelemj0 12645 ennnfonelem0 12649 ndxarg 12728 ndxslid 12730 strndxid 12733 basendxnn 12761 strle1g 12811 plusgndxnn 12816 2strbasg 12824 2stropg 12825 tsetndxnn 12893 plendxnn 12907 dsndxnn 12922 unifndxnn 12932 rmodislmodlem 13984 rmodislmod 13985 cndsex 14187 znval 14270 znle 14271 znbaslemnn 14273 znbas 14278 znzrhval 14281 psrval 14300 fczpsrbag 14305 setsmsbasg 14823 cnbl0 14878 cnopncntop 14888 cnopn 14889 remet 14892 divcnap 14909 expcn 14913 climcncf 14928 idcncf 14945 expcncf 14953 cnrehmeocntop 14954 hovercncf 14990 plyrecj 15107 sincn 15113 coscn 15114 2logb9irrALT 15318 2irrexpq 15320 2irrexpqap 15322 lgslem4 15352 lgsdir2lem2 15378 bdinex2 15654 bj-inex 15661 012of 15748 2o01f 15749 peano3nninf 15762 cvgcmp2nlemabs 15789 trilpolemisumle 15795 |
| Copyright terms: Public domain | W3C validator |