![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeltri | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeltr.1 | ⊢ 𝐴 = 𝐵 |
eqeltr.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltri | ⊢ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltr.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
2 | eqeltr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | eleq1i 2259 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
4 | 1, 3 | mpbir 146 | 1 ⊢ 𝐴 ∈ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: eqeltrri 2267 3eltr4i 2275 intab 3899 inex2 4164 vpwex 4208 ord3ex 4219 uniopel 4285 onsucelsucexmid 4562 nnpredcl 4655 elvvuni 4723 isarep2 5341 acexmidlemcase 5913 abrexex2 6176 oprabex 6180 oprabrexex2 6182 mpoexw 6266 rdg0 6440 frecex 6447 1on 6476 2on 6478 3on 6480 4on 6481 1onn 6573 2onn 6574 3onn 6575 4onn 6576 mapsnf1o2 6750 exmidpw 6964 exmidpw2en 6968 unfiexmid 6974 xpfi 6986 ssfirab 6990 fnfi 6995 iunfidisj 7005 fidcenumlemr 7014 sbthlemi10 7025 ctmlemr 7167 nninfex 7180 exmidonfinlem 7253 acfun 7267 exmidaclem 7268 pw1ne1 7289 ccfunen 7324 nqex 7423 nq0ex 7500 1pr 7614 ltexprlempr 7668 recexprlempr 7692 cauappcvgprlemcl 7713 caucvgprlemcl 7736 caucvgprprlemcl 7764 addvalex 7904 peano1nnnn 7912 peano2nnnn 7913 axcnex 7919 ax1cn 7921 ax1re 7922 pnfxr 8072 mnfxr 8076 inelr 8603 cju 8980 2re 9052 3re 9056 4re 9059 5re 9061 6re 9063 7re 9065 8re 9067 9re 9069 2nn 9143 3nn 9144 4nn 9145 5nn 9146 6nn 9147 7nn 9148 8nn 9149 9nn 9150 nn0ex 9246 nneoor 9419 zeo 9422 deccl 9462 decnncl 9467 numnncl2 9470 decnncl2 9471 numsucc 9487 numma2c 9493 numadd 9494 numaddc 9495 nummul1c 9496 nummul2c 9497 xnegcl 9898 xrex 9922 ioof 10037 uzennn 10507 xnn0nnen 10508 seqex 10520 m1expcl2 10632 faccl 10806 facwordi 10811 faclbnd2 10813 bccl 10838 crre 11001 remim 11004 absval 11145 climle 11477 climcvg1nlem 11492 iserabs 11618 geo2lim 11659 prodfclim1 11687 fprodle 11783 ere 11813 ege2le3 11814 eftlub 11833 efsep 11834 tan0 11874 ef01bndlem 11899 nn0o 12048 pczpre 12435 pockthi 12496 igz 12512 ennnfonelemj0 12558 ennnfonelem0 12562 ndxarg 12641 ndxslid 12643 strndxid 12646 basendxnn 12674 strle1g 12724 plusgndxnn 12729 2strbasg 12737 2stropg 12738 tsetndxnn 12806 plendxnn 12820 dsndxnn 12831 unifndxnn 12841 rmodislmodlem 13846 rmodislmod 13847 znval 14124 znle 14125 znbaslemnn 14127 znbas 14132 znzrhval 14135 psrval 14152 fczpsrbag 14157 setsmsbasg 14647 cnbl0 14702 cnopncntop 14705 remet 14708 divcnap 14723 climcncf 14739 idcncf 14755 expcncf 14763 cnrehmeocntop 14764 hovercncf 14800 sincn 14904 coscn 14905 2logb9irrALT 15106 2irrexpq 15108 2irrexpqap 15110 lgslem4 15119 lgsdir2lem2 15145 bdinex2 15392 bj-inex 15399 012of 15486 2o01f 15487 peano3nninf 15497 cvgcmp2nlemabs 15522 trilpolemisumle 15528 |
Copyright terms: Public domain | W3C validator |