![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eltr3d | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr3d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
3eltr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3eltr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3eltr3d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 3eltr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | 3eltr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | eleqtrd 2272 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
5 | 1, 4 | eqeltrrd 2271 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: reg3exmidlemwe 4611 nnaordi 6561 icoshftf1o 10057 lincmb01cmp 10069 fzosubel 10261 cnmpt2res 14465 dvcnp2cntop 14848 |
Copyright terms: Public domain | W3C validator |