| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1sr | GIF version | ||
| Description: The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995.) |
| Ref | Expression |
|---|---|
| 1sr | ⊢ 1R ∈ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 7667 | . . . . 5 ⊢ 1P ∈ P | |
| 2 | addclpr 7650 | . . . . 5 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
| 3 | 1, 1, 2 | mp2an 426 | . . . 4 ⊢ (1P +P 1P) ∈ P |
| 4 | opelxpi 4707 | . . . 4 ⊢ (((1P +P 1P) ∈ P ∧ 1P ∈ P) → 〈(1P +P 1P), 1P〉 ∈ (P × P)) | |
| 5 | 3, 1, 4 | mp2an 426 | . . 3 ⊢ 〈(1P +P 1P), 1P〉 ∈ (P × P) |
| 6 | enrex 7850 | . . . 4 ⊢ ~R ∈ V | |
| 7 | 6 | ecelqsi 6676 | . . 3 ⊢ (〈(1P +P 1P), 1P〉 ∈ (P × P) → [〈(1P +P 1P), 1P〉] ~R ∈ ((P × P) / ~R )) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ [〈(1P +P 1P), 1P〉] ~R ∈ ((P × P) / ~R ) |
| 9 | df-1r 7845 | . 2 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
| 10 | df-nr 7840 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 11 | 8, 9, 10 | 3eltr4i 2287 | 1 ⊢ 1R ∈ R |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 〈cop 3636 × cxp 4673 (class class class)co 5944 [cec 6618 / cqs 6619 Pcnp 7404 1Pc1p 7405 +P cpp 7406 ~R cer 7409 Rcnr 7410 1Rc1r 7412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-eprel 4336 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-1o 6502 df-2o 6503 df-oadd 6506 df-omul 6507 df-er 6620 df-ec 6622 df-qs 6626 df-ni 7417 df-pli 7418 df-mi 7419 df-lti 7420 df-plpq 7457 df-mpq 7458 df-enq 7460 df-nqqs 7461 df-plqqs 7462 df-mqqs 7463 df-1nqqs 7464 df-rq 7465 df-ltnqqs 7466 df-enq0 7537 df-nq0 7538 df-0nq0 7539 df-plq0 7540 df-mq0 7541 df-inp 7579 df-i1p 7580 df-iplp 7581 df-enr 7839 df-nr 7840 df-1r 7845 |
| This theorem is referenced by: 1ne0sr 7879 pn0sr 7884 ltadd1sr 7889 ltm1sr 7890 caucvgsrlemoffval 7909 caucvgsrlemofff 7910 caucvgsrlemoffcau 7911 caucvgsrlemoffgt1 7912 caucvgsrlemoffres 7913 caucvgsr 7915 suplocsrlempr 7920 pitonnlem2 7960 peano1nnnn 7965 peano2nnnn 7966 ax1cn 7974 ax1re 7975 axicn 7976 axi2m1 7988 ax1rid 7990 axprecex 7993 axcnre 7994 |
| Copyright terms: Public domain | W3C validator |