ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1sr GIF version

Theorem 1sr 7899
Description: The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995.)
Assertion
Ref Expression
1sr 1RR

Proof of Theorem 1sr
StepHypRef Expression
1 1pr 7702 . . . . 5 1PP
2 addclpr 7685 . . . . 5 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
31, 1, 2mp2an 426 . . . 4 (1P +P 1P) ∈ P
4 opelxpi 4725 . . . 4 (((1P +P 1P) ∈ P ∧ 1PP) → ⟨(1P +P 1P), 1P⟩ ∈ (P × P))
53, 1, 4mp2an 426 . . 3 ⟨(1P +P 1P), 1P⟩ ∈ (P × P)
6 enrex 7885 . . . 4 ~R ∈ V
76ecelqsi 6699 . . 3 (⟨(1P +P 1P), 1P⟩ ∈ (P × P) → [⟨(1P +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
85, 7ax-mp 5 . 2 [⟨(1P +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R )
9 df-1r 7880 . 2 1R = [⟨(1P +P 1P), 1P⟩] ~R
10 df-nr 7875 . 2 R = ((P × P) / ~R )
118, 9, 103eltr4i 2289 1 1RR
Colors of variables: wff set class
Syntax hints:  wcel 2178  cop 3646   × cxp 4691  (class class class)co 5967  [cec 6641   / cqs 6642  Pcnp 7439  1Pc1p 7440   +P cpp 7441   ~R cer 7444  Rcnr 7445  1Rc1r 7447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-i1p 7615  df-iplp 7616  df-enr 7874  df-nr 7875  df-1r 7880
This theorem is referenced by:  1ne0sr  7914  pn0sr  7919  ltadd1sr  7924  ltm1sr  7925  caucvgsrlemoffval  7944  caucvgsrlemofff  7945  caucvgsrlemoffcau  7946  caucvgsrlemoffgt1  7947  caucvgsrlemoffres  7948  caucvgsr  7950  suplocsrlempr  7955  pitonnlem2  7995  peano1nnnn  8000  peano2nnnn  8001  ax1cn  8009  ax1re  8010  axicn  8011  axi2m1  8023  ax1rid  8025  axprecex  8028  axcnre  8029
  Copyright terms: Public domain W3C validator