| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1sr | GIF version | ||
| Description: The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995.) |
| Ref | Expression |
|---|---|
| 1sr | ⊢ 1R ∈ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 7737 | . . . . 5 ⊢ 1P ∈ P | |
| 2 | addclpr 7720 | . . . . 5 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
| 3 | 1, 1, 2 | mp2an 426 | . . . 4 ⊢ (1P +P 1P) ∈ P |
| 4 | opelxpi 4750 | . . . 4 ⊢ (((1P +P 1P) ∈ P ∧ 1P ∈ P) → 〈(1P +P 1P), 1P〉 ∈ (P × P)) | |
| 5 | 3, 1, 4 | mp2an 426 | . . 3 ⊢ 〈(1P +P 1P), 1P〉 ∈ (P × P) |
| 6 | enrex 7920 | . . . 4 ⊢ ~R ∈ V | |
| 7 | 6 | ecelqsi 6734 | . . 3 ⊢ (〈(1P +P 1P), 1P〉 ∈ (P × P) → [〈(1P +P 1P), 1P〉] ~R ∈ ((P × P) / ~R )) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ [〈(1P +P 1P), 1P〉] ~R ∈ ((P × P) / ~R ) |
| 9 | df-1r 7915 | . 2 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
| 10 | df-nr 7910 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 11 | 8, 9, 10 | 3eltr4i 2311 | 1 ⊢ 1R ∈ R |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 〈cop 3669 × cxp 4716 (class class class)co 6000 [cec 6676 / cqs 6677 Pcnp 7474 1Pc1p 7475 +P cpp 7476 ~R cer 7479 Rcnr 7480 1Rc1r 7482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-2o 6561 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 df-enq0 7607 df-nq0 7608 df-0nq0 7609 df-plq0 7610 df-mq0 7611 df-inp 7649 df-i1p 7650 df-iplp 7651 df-enr 7909 df-nr 7910 df-1r 7915 |
| This theorem is referenced by: 1ne0sr 7949 pn0sr 7954 ltadd1sr 7959 ltm1sr 7960 caucvgsrlemoffval 7979 caucvgsrlemofff 7980 caucvgsrlemoffcau 7981 caucvgsrlemoffgt1 7982 caucvgsrlemoffres 7983 caucvgsr 7985 suplocsrlempr 7990 pitonnlem2 8030 peano1nnnn 8035 peano2nnnn 8036 ax1cn 8044 ax1re 8045 axicn 8046 axi2m1 8058 ax1rid 8060 axprecex 8063 axcnre 8064 |
| Copyright terms: Public domain | W3C validator |