| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0r | GIF version | ||
| Description: The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.) |
| Ref | Expression |
|---|---|
| 0r | ⊢ 0R ∈ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 7674 | . . . 4 ⊢ 1P ∈ P | |
| 2 | opelxpi 4711 | . . . 4 ⊢ ((1P ∈ P ∧ 1P ∈ P) → 〈1P, 1P〉 ∈ (P × P)) | |
| 3 | 1, 1, 2 | mp2an 426 | . . 3 ⊢ 〈1P, 1P〉 ∈ (P × P) |
| 4 | enrex 7857 | . . . 4 ⊢ ~R ∈ V | |
| 5 | 4 | ecelqsi 6683 | . . 3 ⊢ (〈1P, 1P〉 ∈ (P × P) → [〈1P, 1P〉] ~R ∈ ((P × P) / ~R )) |
| 6 | 3, 5 | ax-mp 5 | . 2 ⊢ [〈1P, 1P〉] ~R ∈ ((P × P) / ~R ) |
| 7 | df-0r 7851 | . 2 ⊢ 0R = [〈1P, 1P〉] ~R | |
| 8 | df-nr 7847 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 9 | 6, 7, 8 | 3eltr4i 2288 | 1 ⊢ 0R ∈ R |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 〈cop 3637 × cxp 4677 [cec 6625 / cqs 6626 Pcnp 7411 1Pc1p 7412 ~R cer 7416 Rcnr 7417 0Rc0r 7418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-eprel 4340 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-1o 6509 df-oadd 6513 df-omul 6514 df-er 6627 df-ec 6629 df-qs 6633 df-ni 7424 df-pli 7425 df-mi 7426 df-lti 7427 df-plpq 7464 df-mpq 7465 df-enq 7467 df-nqqs 7468 df-plqqs 7469 df-mqqs 7470 df-1nqqs 7471 df-rq 7472 df-ltnqqs 7473 df-inp 7586 df-i1p 7587 df-enr 7846 df-nr 7847 df-0r 7851 |
| This theorem is referenced by: addgt0sr 7895 ltadd1sr 7896 map2psrprg 7925 suplocsrlempr 7927 opelreal 7947 elreal 7948 elrealeu 7949 elreal2 7950 eqresr 7956 addresr 7957 mulresr 7958 pitonn 7968 peano2nnnn 7973 axresscn 7980 axicn 7983 axi2m1 7995 ax0id 7998 axprecex 8000 axcnre 8001 |
| Copyright terms: Public domain | W3C validator |