ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0r GIF version

Theorem 0r 7570
Description: The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.)
Assertion
Ref Expression
0r 0RR

Proof of Theorem 0r
StepHypRef Expression
1 1pr 7374 . . . 4 1PP
2 opelxpi 4571 . . . 4 ((1PP ∧ 1PP) → ⟨1P, 1P⟩ ∈ (P × P))
31, 1, 2mp2an 422 . . 3 ⟨1P, 1P⟩ ∈ (P × P)
4 enrex 7557 . . . 4 ~R ∈ V
54ecelqsi 6483 . . 3 (⟨1P, 1P⟩ ∈ (P × P) → [⟨1P, 1P⟩] ~R ∈ ((P × P) / ~R ))
63, 5ax-mp 5 . 2 [⟨1P, 1P⟩] ~R ∈ ((P × P) / ~R )
7 df-0r 7551 . 2 0R = [⟨1P, 1P⟩] ~R
8 df-nr 7547 . 2 R = ((P × P) / ~R )
96, 7, 83eltr4i 2221 1 0RR
Colors of variables: wff set class
Syntax hints:  wcel 1480  cop 3530   × cxp 4537  [cec 6427   / cqs 6428  Pcnp 7111  1Pc1p 7112   ~R cer 7116  Rcnr 7117  0Rc0r 7118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7124  df-pli 7125  df-mi 7126  df-lti 7127  df-plpq 7164  df-mpq 7165  df-enq 7167  df-nqqs 7168  df-plqqs 7169  df-mqqs 7170  df-1nqqs 7171  df-rq 7172  df-ltnqqs 7173  df-inp 7286  df-i1p 7287  df-enr 7546  df-nr 7547  df-0r 7551
This theorem is referenced by:  addgt0sr  7595  ltadd1sr  7596  map2psrprg  7625  suplocsrlempr  7627  opelreal  7647  elreal  7648  elrealeu  7649  elreal2  7650  eqresr  7656  addresr  7657  mulresr  7658  pitonn  7668  peano2nnnn  7673  axresscn  7680  axicn  7683  axi2m1  7695  ax0id  7698  axprecex  7700  axcnre  7701
  Copyright terms: Public domain W3C validator