| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0r | GIF version | ||
| Description: The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.) |
| Ref | Expression |
|---|---|
| 0r | ⊢ 0R ∈ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 7709 | . . . 4 ⊢ 1P ∈ P | |
| 2 | opelxpi 4728 | . . . 4 ⊢ ((1P ∈ P ∧ 1P ∈ P) → 〈1P, 1P〉 ∈ (P × P)) | |
| 3 | 1, 1, 2 | mp2an 426 | . . 3 ⊢ 〈1P, 1P〉 ∈ (P × P) |
| 4 | enrex 7892 | . . . 4 ⊢ ~R ∈ V | |
| 5 | 4 | ecelqsi 6706 | . . 3 ⊢ (〈1P, 1P〉 ∈ (P × P) → [〈1P, 1P〉] ~R ∈ ((P × P) / ~R )) |
| 6 | 3, 5 | ax-mp 5 | . 2 ⊢ [〈1P, 1P〉] ~R ∈ ((P × P) / ~R ) |
| 7 | df-0r 7886 | . 2 ⊢ 0R = [〈1P, 1P〉] ~R | |
| 8 | df-nr 7882 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 9 | 6, 7, 8 | 3eltr4i 2291 | 1 ⊢ 0R ∈ R |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 〈cop 3649 × cxp 4694 [cec 6648 / cqs 6649 Pcnp 7446 1Pc1p 7447 ~R cer 7451 Rcnr 7452 0Rc0r 7453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-eprel 4357 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-1o 6532 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-pli 7460 df-mi 7461 df-lti 7462 df-plpq 7499 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-plqqs 7504 df-mqqs 7505 df-1nqqs 7506 df-rq 7507 df-ltnqqs 7508 df-inp 7621 df-i1p 7622 df-enr 7881 df-nr 7882 df-0r 7886 |
| This theorem is referenced by: addgt0sr 7930 ltadd1sr 7931 map2psrprg 7960 suplocsrlempr 7962 opelreal 7982 elreal 7983 elrealeu 7984 elreal2 7985 eqresr 7991 addresr 7992 mulresr 7993 pitonn 8003 peano2nnnn 8008 axresscn 8015 axicn 8018 axi2m1 8030 ax0id 8033 axprecex 8035 axcnre 8036 |
| Copyright terms: Public domain | W3C validator |