| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > m1r | GIF version | ||
| Description: The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.) |
| Ref | Expression |
|---|---|
| m1r | ⊢ -1R ∈ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 7638 | . . . 4 ⊢ 1P ∈ P | |
| 2 | addclpr 7621 | . . . . 5 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
| 3 | 1, 1, 2 | mp2an 426 | . . . 4 ⊢ (1P +P 1P) ∈ P |
| 4 | opelxpi 4696 | . . . 4 ⊢ ((1P ∈ P ∧ (1P +P 1P) ∈ P) → 〈1P, (1P +P 1P)〉 ∈ (P × P)) | |
| 5 | 1, 3, 4 | mp2an 426 | . . 3 ⊢ 〈1P, (1P +P 1P)〉 ∈ (P × P) |
| 6 | enrex 7821 | . . . 4 ⊢ ~R ∈ V | |
| 7 | 6 | ecelqsi 6657 | . . 3 ⊢ (〈1P, (1P +P 1P)〉 ∈ (P × P) → [〈1P, (1P +P 1P)〉] ~R ∈ ((P × P) / ~R )) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ [〈1P, (1P +P 1P)〉] ~R ∈ ((P × P) / ~R ) |
| 9 | df-m1r 7817 | . 2 ⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | |
| 10 | df-nr 7811 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 11 | 8, 9, 10 | 3eltr4i 2278 | 1 ⊢ -1R ∈ R |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 〈cop 3626 × cxp 4662 (class class class)co 5925 [cec 6599 / cqs 6600 Pcnp 7375 1Pc1p 7376 +P cpp 7377 ~R cer 7380 Rcnr 7381 -1Rcm1r 7384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-2o 6484 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-lti 7391 df-plpq 7428 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-mqqs 7434 df-1nqqs 7435 df-rq 7436 df-ltnqqs 7437 df-enq0 7508 df-nq0 7509 df-0nq0 7510 df-plq0 7511 df-mq0 7512 df-inp 7550 df-i1p 7551 df-iplp 7552 df-enr 7810 df-nr 7811 df-m1r 7817 |
| This theorem is referenced by: pn0sr 7855 negexsr 7856 ltm1sr 7861 caucvgsrlemoffval 7880 caucvgsrlemofff 7881 caucvgsrlemoffres 7884 caucvgsr 7886 mappsrprg 7888 map2psrprg 7889 suplocsrlempr 7891 suplocsrlem 7892 mulcnsr 7919 mulresr 7922 mulcnsrec 7927 axmulcl 7950 axmulass 7957 axdistr 7958 axi2m1 7959 axrnegex 7963 axcnre 7965 |
| Copyright terms: Public domain | W3C validator |