Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > m1r | GIF version |
Description: The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.) |
Ref | Expression |
---|---|
m1r | ⊢ -1R ∈ R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pr 7528 | . . . 4 ⊢ 1P ∈ P | |
2 | addclpr 7511 | . . . . 5 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
3 | 1, 1, 2 | mp2an 426 | . . . 4 ⊢ (1P +P 1P) ∈ P |
4 | opelxpi 4652 | . . . 4 ⊢ ((1P ∈ P ∧ (1P +P 1P) ∈ P) → 〈1P, (1P +P 1P)〉 ∈ (P × P)) | |
5 | 1, 3, 4 | mp2an 426 | . . 3 ⊢ 〈1P, (1P +P 1P)〉 ∈ (P × P) |
6 | enrex 7711 | . . . 4 ⊢ ~R ∈ V | |
7 | 6 | ecelqsi 6579 | . . 3 ⊢ (〈1P, (1P +P 1P)〉 ∈ (P × P) → [〈1P, (1P +P 1P)〉] ~R ∈ ((P × P) / ~R )) |
8 | 5, 7 | ax-mp 5 | . 2 ⊢ [〈1P, (1P +P 1P)〉] ~R ∈ ((P × P) / ~R ) |
9 | df-m1r 7707 | . 2 ⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | |
10 | df-nr 7701 | . 2 ⊢ R = ((P × P) / ~R ) | |
11 | 8, 9, 10 | 3eltr4i 2257 | 1 ⊢ -1R ∈ R |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2146 〈cop 3592 × cxp 4618 (class class class)co 5865 [cec 6523 / cqs 6524 Pcnp 7265 1Pc1p 7266 +P cpp 7267 ~R cer 7270 Rcnr 7271 -1Rcm1r 7274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-eprel 4283 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-1o 6407 df-2o 6408 df-oadd 6411 df-omul 6412 df-er 6525 df-ec 6527 df-qs 6531 df-ni 7278 df-pli 7279 df-mi 7280 df-lti 7281 df-plpq 7318 df-mpq 7319 df-enq 7321 df-nqqs 7322 df-plqqs 7323 df-mqqs 7324 df-1nqqs 7325 df-rq 7326 df-ltnqqs 7327 df-enq0 7398 df-nq0 7399 df-0nq0 7400 df-plq0 7401 df-mq0 7402 df-inp 7440 df-i1p 7441 df-iplp 7442 df-enr 7700 df-nr 7701 df-m1r 7707 |
This theorem is referenced by: pn0sr 7745 negexsr 7746 ltm1sr 7751 caucvgsrlemoffval 7770 caucvgsrlemofff 7771 caucvgsrlemoffres 7774 caucvgsr 7776 mappsrprg 7778 map2psrprg 7779 suplocsrlempr 7781 suplocsrlem 7782 mulcnsr 7809 mulresr 7812 mulcnsrec 7817 axmulcl 7840 axmulass 7847 axdistr 7848 axi2m1 7849 axrnegex 7853 axcnre 7855 |
Copyright terms: Public domain | W3C validator |