| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > m1r | GIF version | ||
| Description: The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.) |
| Ref | Expression |
|---|---|
| m1r | ⊢ -1R ∈ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 7682 | . . . 4 ⊢ 1P ∈ P | |
| 2 | addclpr 7665 | . . . . 5 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
| 3 | 1, 1, 2 | mp2an 426 | . . . 4 ⊢ (1P +P 1P) ∈ P |
| 4 | opelxpi 4714 | . . . 4 ⊢ ((1P ∈ P ∧ (1P +P 1P) ∈ P) → 〈1P, (1P +P 1P)〉 ∈ (P × P)) | |
| 5 | 1, 3, 4 | mp2an 426 | . . 3 ⊢ 〈1P, (1P +P 1P)〉 ∈ (P × P) |
| 6 | enrex 7865 | . . . 4 ⊢ ~R ∈ V | |
| 7 | 6 | ecelqsi 6688 | . . 3 ⊢ (〈1P, (1P +P 1P)〉 ∈ (P × P) → [〈1P, (1P +P 1P)〉] ~R ∈ ((P × P) / ~R )) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ [〈1P, (1P +P 1P)〉] ~R ∈ ((P × P) / ~R ) |
| 9 | df-m1r 7861 | . 2 ⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | |
| 10 | df-nr 7855 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 11 | 8, 9, 10 | 3eltr4i 2288 | 1 ⊢ -1R ∈ R |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 〈cop 3640 × cxp 4680 (class class class)co 5956 [cec 6630 / cqs 6631 Pcnp 7419 1Pc1p 7420 +P cpp 7421 ~R cer 7424 Rcnr 7425 -1Rcm1r 7428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-eprel 4343 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-irdg 6468 df-1o 6514 df-2o 6515 df-oadd 6518 df-omul 6519 df-er 6632 df-ec 6634 df-qs 6638 df-ni 7432 df-pli 7433 df-mi 7434 df-lti 7435 df-plpq 7472 df-mpq 7473 df-enq 7475 df-nqqs 7476 df-plqqs 7477 df-mqqs 7478 df-1nqqs 7479 df-rq 7480 df-ltnqqs 7481 df-enq0 7552 df-nq0 7553 df-0nq0 7554 df-plq0 7555 df-mq0 7556 df-inp 7594 df-i1p 7595 df-iplp 7596 df-enr 7854 df-nr 7855 df-m1r 7861 |
| This theorem is referenced by: pn0sr 7899 negexsr 7900 ltm1sr 7905 caucvgsrlemoffval 7924 caucvgsrlemofff 7925 caucvgsrlemoffres 7928 caucvgsr 7930 mappsrprg 7932 map2psrprg 7933 suplocsrlempr 7935 suplocsrlem 7936 mulcnsr 7963 mulresr 7966 mulcnsrec 7971 axmulcl 7994 axmulass 8001 axdistr 8002 axi2m1 8003 axrnegex 8007 axcnre 8009 |
| Copyright terms: Public domain | W3C validator |