| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrri | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleqtrr.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtrr.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| eleqtrri | ⊢ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrr.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2233 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | eleqtri 2304 | 1 ⊢ 𝐴 ∈ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: 3eltr4i 2311 undifexmid 4276 opi1 4317 opi2 4318 ordpwsucexmid 4661 peano1 4685 acexmidlemcase 5995 acexmidlem2 5997 0lt2o 6585 1lt2o 6586 0elixp 6874 ac6sfi 7056 ctssdccl 7274 exmidomni 7305 exmidonfinlem 7367 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 exmidaclem 7386 pw1ne3 7411 3nelsucpw1 7415 1lt2pi 7523 prarloclemarch2 7602 prarloclemlt 7676 prarloclemcalc 7685 suplocexprlemdisj 7903 suplocexprlemub 7906 pnfxr 8195 mnfxr 8199 0bits 12465 fnpr2ob 13368 dveflem 15394 |
| Copyright terms: Public domain | W3C validator |