ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleqtrri GIF version

Theorem eleqtrri 2305
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eleqtrr.1 𝐴𝐵
eleqtrr.2 𝐶 = 𝐵
Assertion
Ref Expression
eleqtrri 𝐴𝐶

Proof of Theorem eleqtrri
StepHypRef Expression
1 eleqtrr.1 . 2 𝐴𝐵
2 eleqtrr.2 . . 3 𝐶 = 𝐵
32eqcomi 2233 . 2 𝐵 = 𝐶
41, 3eleqtri 2304 1 𝐴𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-clel 2225
This theorem is referenced by:  3eltr4i  2311  undifexmid  4276  opi1  4317  opi2  4318  ordpwsucexmid  4661  peano1  4685  acexmidlemcase  5995  acexmidlem2  5997  0lt2o  6585  1lt2o  6586  0elixp  6874  ac6sfi  7056  ctssdccl  7274  exmidomni  7305  exmidonfinlem  7367  exmidfodomrlemr  7376  exmidfodomrlemrALT  7377  exmidaclem  7386  pw1ne3  7411  3nelsucpw1  7415  1lt2pi  7523  prarloclemarch2  7602  prarloclemlt  7676  prarloclemcalc  7685  suplocexprlemdisj  7903  suplocexprlemub  7906  pnfxr  8195  mnfxr  8199  0bits  12465  fnpr2ob  13368  dveflem  15394
  Copyright terms: Public domain W3C validator