ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleqtrri GIF version

Theorem eleqtrri 2272
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eleqtrr.1 𝐴𝐵
eleqtrr.2 𝐶 = 𝐵
Assertion
Ref Expression
eleqtrri 𝐴𝐶

Proof of Theorem eleqtrri
StepHypRef Expression
1 eleqtrr.1 . 2 𝐴𝐵
2 eleqtrr.2 . . 3 𝐶 = 𝐵
32eqcomi 2200 . 2 𝐵 = 𝐶
41, 3eleqtri 2271 1 𝐴𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192
This theorem is referenced by:  3eltr4i  2278  undifexmid  4226  opi1  4265  opi2  4266  ordpwsucexmid  4606  peano1  4630  acexmidlemcase  5917  acexmidlem2  5919  0lt2o  6499  1lt2o  6500  0elixp  6788  ac6sfi  6959  ctssdccl  7177  exmidomni  7208  exmidonfinlem  7260  exmidfodomrlemr  7269  exmidfodomrlemrALT  7270  exmidaclem  7275  pw1ne3  7297  3nelsucpw1  7301  1lt2pi  7407  prarloclemarch2  7486  prarloclemlt  7560  prarloclemcalc  7569  suplocexprlemdisj  7787  suplocexprlemub  7790  pnfxr  8079  mnfxr  8083  fnpr2ob  12983  dveflem  14962
  Copyright terms: Public domain W3C validator