| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrri | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleqtrr.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtrr.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| eleqtrri | ⊢ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrr.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2208 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | eleqtri 2279 | 1 ⊢ 𝐴 ∈ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: 3eltr4i 2286 undifexmid 4236 opi1 4275 opi2 4276 ordpwsucexmid 4617 peano1 4641 acexmidlemcase 5938 acexmidlem2 5940 0lt2o 6526 1lt2o 6527 0elixp 6815 ac6sfi 6994 ctssdccl 7212 exmidomni 7243 exmidonfinlem 7300 exmidfodomrlemr 7309 exmidfodomrlemrALT 7310 exmidaclem 7319 pw1ne3 7341 3nelsucpw1 7345 1lt2pi 7452 prarloclemarch2 7531 prarloclemlt 7605 prarloclemcalc 7614 suplocexprlemdisj 7832 suplocexprlemub 7835 pnfxr 8124 mnfxr 8128 0bits 12241 fnpr2ob 13143 dveflem 15169 |
| Copyright terms: Public domain | W3C validator |