| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrri | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleqtrr.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtrr.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| eleqtrri | ⊢ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrr.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2209 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | eleqtri 2280 | 1 ⊢ 𝐴 ∈ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: 3eltr4i 2287 undifexmid 4237 opi1 4276 opi2 4277 ordpwsucexmid 4618 peano1 4642 acexmidlemcase 5939 acexmidlem2 5941 0lt2o 6527 1lt2o 6528 0elixp 6816 ac6sfi 6995 ctssdccl 7213 exmidomni 7244 exmidonfinlem 7301 exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 exmidaclem 7320 pw1ne3 7342 3nelsucpw1 7346 1lt2pi 7453 prarloclemarch2 7532 prarloclemlt 7606 prarloclemcalc 7615 suplocexprlemdisj 7833 suplocexprlemub 7836 pnfxr 8125 mnfxr 8129 0bits 12270 fnpr2ob 13172 dveflem 15198 |
| Copyright terms: Public domain | W3C validator |