Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleqtrri | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleqtrr.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtrr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
eleqtrri | ⊢ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrr.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2179 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | eleqtri 2250 | 1 ⊢ 𝐴 ∈ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 df-clel 2171 |
This theorem is referenced by: 3eltr4i 2257 undifexmid 4188 opi1 4226 opi2 4227 ordpwsucexmid 4563 peano1 4587 acexmidlemcase 5860 acexmidlem2 5862 0lt2o 6432 1lt2o 6433 0elixp 6719 ac6sfi 6888 ctssdccl 7100 exmidomni 7130 exmidonfinlem 7182 exmidfodomrlemr 7191 exmidfodomrlemrALT 7192 exmidaclem 7197 pw1ne3 7219 3nelsucpw1 7223 1lt2pi 7314 prarloclemarch2 7393 prarloclemlt 7467 prarloclemcalc 7476 suplocexprlemdisj 7694 suplocexprlemub 7697 pnfxr 7984 mnfxr 7988 dveflem 13738 |
Copyright terms: Public domain | W3C validator |