| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrri | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleqtrr.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtrr.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| eleqtrri | ⊢ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrr.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2211 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | eleqtri 2282 | 1 ⊢ 𝐴 ∈ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: 3eltr4i 2289 undifexmid 4253 opi1 4294 opi2 4295 ordpwsucexmid 4636 peano1 4660 acexmidlemcase 5962 acexmidlem2 5964 0lt2o 6550 1lt2o 6551 0elixp 6839 ac6sfi 7021 ctssdccl 7239 exmidomni 7270 exmidonfinlem 7332 exmidfodomrlemr 7341 exmidfodomrlemrALT 7342 exmidaclem 7351 pw1ne3 7376 3nelsucpw1 7380 1lt2pi 7488 prarloclemarch2 7567 prarloclemlt 7641 prarloclemcalc 7650 suplocexprlemdisj 7868 suplocexprlemub 7871 pnfxr 8160 mnfxr 8164 0bits 12385 fnpr2ob 13287 dveflem 15313 |
| Copyright terms: Public domain | W3C validator |