Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleqtrri | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleqtrr.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtrr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
eleqtrri | ⊢ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrr.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2169 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | eleqtri 2241 | 1 ⊢ 𝐴 ∈ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: 3eltr4i 2248 undifexmid 4172 opi1 4210 opi2 4211 ordpwsucexmid 4547 peano1 4571 acexmidlemcase 5837 acexmidlem2 5839 0lt2o 6409 1lt2o 6410 0elixp 6695 ac6sfi 6864 ctssdccl 7076 exmidomni 7106 exmidonfinlem 7149 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 exmidaclem 7164 pw1ne3 7186 3nelsucpw1 7190 1lt2pi 7281 prarloclemarch2 7360 prarloclemlt 7434 prarloclemcalc 7443 suplocexprlemdisj 7661 suplocexprlemub 7664 pnfxr 7951 mnfxr 7955 dveflem 13337 |
Copyright terms: Public domain | W3C validator |