Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleqtrri | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleqtrr.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtrr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
eleqtrri | ⊢ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrr.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2174 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | eleqtri 2245 | 1 ⊢ 𝐴 ∈ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: 3eltr4i 2252 undifexmid 4179 opi1 4217 opi2 4218 ordpwsucexmid 4554 peano1 4578 acexmidlemcase 5848 acexmidlem2 5850 0lt2o 6420 1lt2o 6421 0elixp 6707 ac6sfi 6876 ctssdccl 7088 exmidomni 7118 exmidonfinlem 7170 exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 exmidaclem 7185 pw1ne3 7207 3nelsucpw1 7211 1lt2pi 7302 prarloclemarch2 7381 prarloclemlt 7455 prarloclemcalc 7464 suplocexprlemdisj 7682 suplocexprlemub 7685 pnfxr 7972 mnfxr 7976 dveflem 13481 |
Copyright terms: Public domain | W3C validator |