Proof of Theorem triap
| Step | Hyp | Ref
| Expression |
| 1 | | ltap 8677 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 # 𝐴) |
| 2 | 1 | 3expia 1207 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐵 # 𝐴)) |
| 3 | | recn 8029 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
| 4 | | recn 8029 |
. . . . . 6
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) |
| 5 | | apsym 8650 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ 𝐵 # 𝐴)) |
| 6 | 3, 4, 5 | syl2an 289 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ 𝐵 # 𝐴)) |
| 7 | 2, 6 | sylibrd 169 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 # 𝐵)) |
| 8 | | orc 713 |
. . . . 5
⊢ (𝐴 # 𝐵 → (𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵)) |
| 9 | | df-dc 836 |
. . . . 5
⊢
(DECID 𝐴 # 𝐵 ↔ (𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵)) |
| 10 | 8, 9 | sylibr 134 |
. . . 4
⊢ (𝐴 # 𝐵 → DECID 𝐴 # 𝐵) |
| 11 | 7, 10 | syl6 33 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → DECID 𝐴 # 𝐵)) |
| 12 | | apti 8666 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) |
| 13 | 3, 4, 12 | syl2an 289 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) |
| 14 | | olc 712 |
. . . . 5
⊢ (¬
𝐴 # 𝐵 → (𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵)) |
| 15 | 14, 9 | sylibr 134 |
. . . 4
⊢ (¬
𝐴 # 𝐵 → DECID 𝐴 # 𝐵) |
| 16 | 13, 15 | biimtrdi 163 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → DECID 𝐴 # 𝐵)) |
| 17 | | ltap 8677 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴) → 𝐴 # 𝐵) |
| 18 | 17, 10 | syl 14 |
. . . . 5
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴) → DECID 𝐴 # 𝐵) |
| 19 | 18 | 3expia 1207 |
. . . 4
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → DECID 𝐴 # 𝐵)) |
| 20 | 19 | ancoms 268 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → DECID 𝐴 # 𝐵)) |
| 21 | 11, 16, 20 | 3jaod 1315 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → DECID 𝐴 # 𝐵)) |
| 22 | | reaplt 8632 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 23 | | orc 713 |
. . . . . . 7
⊢ (𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵)) |
| 24 | 23 | orim1i 761 |
. . . . . 6
⊢ ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 < 𝐴)) |
| 25 | | df-3or 981 |
. . . . . 6
⊢ ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) ↔ ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 < 𝐴)) |
| 26 | 24, 25 | sylibr 134 |
. . . . 5
⊢ ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) |
| 27 | 22, 26 | biimtrdi 163 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
| 28 | | 3mix2 1169 |
. . . . 5
⊢ (𝐴 = 𝐵 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) |
| 29 | 13, 28 | biimtrrdi 164 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬
𝐴 # 𝐵 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
| 30 | 27, 29 | jaod 718 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
| 31 | 9, 30 | biimtrid 152 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(DECID 𝐴 #
𝐵 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
| 32 | 21, 31 | impbid 129 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) ↔ DECID 𝐴 # 𝐵)) |