Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  triap GIF version

Theorem triap 15832
Description: Two ways of stating real number trichotomy. (Contributed by Jim Kingdon, 23-Aug-2023.)
Assertion
Ref Expression
triap ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) ↔ DECID 𝐴 # 𝐵))

Proof of Theorem triap
StepHypRef Expression
1 ltap 8688 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 # 𝐴)
213expia 1207 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐵 # 𝐴))
3 recn 8040 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 recn 8040 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
5 apsym 8661 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵𝐵 # 𝐴))
63, 4, 5syl2an 289 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐵 # 𝐴))
72, 6sylibrd 169 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 # 𝐵))
8 orc 713 . . . . 5 (𝐴 # 𝐵 → (𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵))
9 df-dc 836 . . . . 5 (DECID 𝐴 # 𝐵 ↔ (𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵))
108, 9sylibr 134 . . . 4 (𝐴 # 𝐵DECID 𝐴 # 𝐵)
117, 10syl6 33 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵DECID 𝐴 # 𝐵))
12 apti 8677 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
133, 4, 12syl2an 289 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
14 olc 712 . . . . 5 𝐴 # 𝐵 → (𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵))
1514, 9sylibr 134 . . . 4 𝐴 # 𝐵DECID 𝐴 # 𝐵)
1613, 15biimtrdi 163 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵DECID 𝐴 # 𝐵))
17 ltap 8688 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴) → 𝐴 # 𝐵)
1817, 10syl 14 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴) → DECID 𝐴 # 𝐵)
19183expia 1207 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴DECID 𝐴 # 𝐵))
2019ancoms 268 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴DECID 𝐴 # 𝐵))
2111, 16, 203jaod 1316 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → DECID 𝐴 # 𝐵))
22 reaplt 8643 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
23 orc 713 . . . . . . 7 (𝐴 < 𝐵 → (𝐴 < 𝐵𝐴 = 𝐵))
2423orim1i 761 . . . . . 6 ((𝐴 < 𝐵𝐵 < 𝐴) → ((𝐴 < 𝐵𝐴 = 𝐵) ∨ 𝐵 < 𝐴))
25 df-3or 981 . . . . . 6 ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) ↔ ((𝐴 < 𝐵𝐴 = 𝐵) ∨ 𝐵 < 𝐴))
2624, 25sylibr 134 . . . . 5 ((𝐴 < 𝐵𝐵 < 𝐴) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
2722, 26biimtrdi 163 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴)))
28 3mix2 1169 . . . . 5 (𝐴 = 𝐵 → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
2913, 28biimtrrdi 164 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 # 𝐵 → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴)))
3027, 29jaod 718 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴)))
319, 30biimtrid 152 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (DECID 𝐴 # 𝐵 → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴)))
3221, 31impbid 129 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) ↔ DECID 𝐴 # 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3o 979  w3a 980   = wceq 1372  wcel 2175   class class class wbr 4043  cc 7905  cr 7906   < clt 8089   # cap 8636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-iota 5229  df-fun 5270  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637
This theorem is referenced by:  reap0  15861  cndcap  15862
  Copyright terms: Public domain W3C validator