Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  triap GIF version

Theorem triap 15673
Description: Two ways of stating real number trichotomy. (Contributed by Jim Kingdon, 23-Aug-2023.)
Assertion
Ref Expression
triap ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) ↔ DECID 𝐴 # 𝐵))

Proof of Theorem triap
StepHypRef Expression
1 ltap 8660 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 # 𝐴)
213expia 1207 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐵 # 𝐴))
3 recn 8012 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 recn 8012 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
5 apsym 8633 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵𝐵 # 𝐴))
63, 4, 5syl2an 289 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐵 # 𝐴))
72, 6sylibrd 169 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 # 𝐵))
8 orc 713 . . . . 5 (𝐴 # 𝐵 → (𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵))
9 df-dc 836 . . . . 5 (DECID 𝐴 # 𝐵 ↔ (𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵))
108, 9sylibr 134 . . . 4 (𝐴 # 𝐵DECID 𝐴 # 𝐵)
117, 10syl6 33 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵DECID 𝐴 # 𝐵))
12 apti 8649 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
133, 4, 12syl2an 289 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
14 olc 712 . . . . 5 𝐴 # 𝐵 → (𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵))
1514, 9sylibr 134 . . . 4 𝐴 # 𝐵DECID 𝐴 # 𝐵)
1613, 15biimtrdi 163 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵DECID 𝐴 # 𝐵))
17 ltap 8660 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴) → 𝐴 # 𝐵)
1817, 10syl 14 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴) → DECID 𝐴 # 𝐵)
19183expia 1207 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴DECID 𝐴 # 𝐵))
2019ancoms 268 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴DECID 𝐴 # 𝐵))
2111, 16, 203jaod 1315 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → DECID 𝐴 # 𝐵))
22 reaplt 8615 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
23 orc 713 . . . . . . 7 (𝐴 < 𝐵 → (𝐴 < 𝐵𝐴 = 𝐵))
2423orim1i 761 . . . . . 6 ((𝐴 < 𝐵𝐵 < 𝐴) → ((𝐴 < 𝐵𝐴 = 𝐵) ∨ 𝐵 < 𝐴))
25 df-3or 981 . . . . . 6 ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) ↔ ((𝐴 < 𝐵𝐴 = 𝐵) ∨ 𝐵 < 𝐴))
2624, 25sylibr 134 . . . . 5 ((𝐴 < 𝐵𝐵 < 𝐴) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
2722, 26biimtrdi 163 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴)))
28 3mix2 1169 . . . . 5 (𝐴 = 𝐵 → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
2913, 28biimtrrdi 164 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 # 𝐵 → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴)))
3027, 29jaod 718 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴)))
319, 30biimtrid 152 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (DECID 𝐴 # 𝐵 → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴)))
3221, 31impbid 129 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) ↔ DECID 𝐴 # 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3o 979  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4033  cc 7877  cr 7878   < clt 8061   # cap 8608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609
This theorem is referenced by:  reap0  15702  cndcap  15703
  Copyright terms: Public domain W3C validator