Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  triap GIF version

Theorem triap 15519
Description: Two ways of stating real number trichotomy. (Contributed by Jim Kingdon, 23-Aug-2023.)
Assertion
Ref Expression
triap ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) ↔ DECID 𝐴 # 𝐵))

Proof of Theorem triap
StepHypRef Expression
1 ltap 8652 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 # 𝐴)
213expia 1207 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐵 # 𝐴))
3 recn 8005 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 recn 8005 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
5 apsym 8625 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵𝐵 # 𝐴))
63, 4, 5syl2an 289 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐵 # 𝐴))
72, 6sylibrd 169 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 # 𝐵))
8 orc 713 . . . . 5 (𝐴 # 𝐵 → (𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵))
9 df-dc 836 . . . . 5 (DECID 𝐴 # 𝐵 ↔ (𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵))
108, 9sylibr 134 . . . 4 (𝐴 # 𝐵DECID 𝐴 # 𝐵)
117, 10syl6 33 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵DECID 𝐴 # 𝐵))
12 apti 8641 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
133, 4, 12syl2an 289 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
14 olc 712 . . . . 5 𝐴 # 𝐵 → (𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵))
1514, 9sylibr 134 . . . 4 𝐴 # 𝐵DECID 𝐴 # 𝐵)
1613, 15biimtrdi 163 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵DECID 𝐴 # 𝐵))
17 ltap 8652 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴) → 𝐴 # 𝐵)
1817, 10syl 14 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴) → DECID 𝐴 # 𝐵)
19183expia 1207 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴DECID 𝐴 # 𝐵))
2019ancoms 268 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴DECID 𝐴 # 𝐵))
2111, 16, 203jaod 1315 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → DECID 𝐴 # 𝐵))
22 reaplt 8607 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
23 orc 713 . . . . . . 7 (𝐴 < 𝐵 → (𝐴 < 𝐵𝐴 = 𝐵))
2423orim1i 761 . . . . . 6 ((𝐴 < 𝐵𝐵 < 𝐴) → ((𝐴 < 𝐵𝐴 = 𝐵) ∨ 𝐵 < 𝐴))
25 df-3or 981 . . . . . 6 ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) ↔ ((𝐴 < 𝐵𝐴 = 𝐵) ∨ 𝐵 < 𝐴))
2624, 25sylibr 134 . . . . 5 ((𝐴 < 𝐵𝐵 < 𝐴) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
2722, 26biimtrdi 163 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴)))
28 3mix2 1169 . . . . 5 (𝐴 = 𝐵 → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
2913, 28biimtrrdi 164 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 # 𝐵 → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴)))
3027, 29jaod 718 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴)))
319, 30biimtrid 152 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (DECID 𝐴 # 𝐵 → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴)))
3221, 31impbid 129 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) ↔ DECID 𝐴 # 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3o 979  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4029  cc 7870  cr 7871   < clt 8054   # cap 8600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601
This theorem is referenced by:  reap0  15548  cndcap  15549
  Copyright terms: Public domain W3C validator