Proof of Theorem triap
Step | Hyp | Ref
| Expression |
1 | | ltap 8552 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 # 𝐴) |
2 | 1 | 3expia 1200 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐵 # 𝐴)) |
3 | | recn 7907 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
4 | | recn 7907 |
. . . . . 6
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) |
5 | | apsym 8525 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ 𝐵 # 𝐴)) |
6 | 3, 4, 5 | syl2an 287 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ 𝐵 # 𝐴)) |
7 | 2, 6 | sylibrd 168 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 # 𝐵)) |
8 | | orc 707 |
. . . . 5
⊢ (𝐴 # 𝐵 → (𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵)) |
9 | | df-dc 830 |
. . . . 5
⊢
(DECID 𝐴 # 𝐵 ↔ (𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵)) |
10 | 8, 9 | sylibr 133 |
. . . 4
⊢ (𝐴 # 𝐵 → DECID 𝐴 # 𝐵) |
11 | 7, 10 | syl6 33 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → DECID 𝐴 # 𝐵)) |
12 | | apti 8541 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) |
13 | 3, 4, 12 | syl2an 287 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) |
14 | | olc 706 |
. . . . 5
⊢ (¬
𝐴 # 𝐵 → (𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵)) |
15 | 14, 9 | sylibr 133 |
. . . 4
⊢ (¬
𝐴 # 𝐵 → DECID 𝐴 # 𝐵) |
16 | 13, 15 | syl6bi 162 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → DECID 𝐴 # 𝐵)) |
17 | | ltap 8552 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴) → 𝐴 # 𝐵) |
18 | 17, 10 | syl 14 |
. . . . 5
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴) → DECID 𝐴 # 𝐵) |
19 | 18 | 3expia 1200 |
. . . 4
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → DECID 𝐴 # 𝐵)) |
20 | 19 | ancoms 266 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → DECID 𝐴 # 𝐵)) |
21 | 11, 16, 20 | 3jaod 1299 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → DECID 𝐴 # 𝐵)) |
22 | | reaplt 8507 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
23 | | orc 707 |
. . . . . . 7
⊢ (𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵)) |
24 | 23 | orim1i 755 |
. . . . . 6
⊢ ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 < 𝐴)) |
25 | | df-3or 974 |
. . . . . 6
⊢ ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) ↔ ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 < 𝐴)) |
26 | 24, 25 | sylibr 133 |
. . . . 5
⊢ ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) |
27 | 22, 26 | syl6bi 162 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
28 | | 3mix2 1162 |
. . . . 5
⊢ (𝐴 = 𝐵 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) |
29 | 13, 28 | syl6bir 163 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬
𝐴 # 𝐵 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
30 | 27, 29 | jaod 712 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 # 𝐵 ∨ ¬ 𝐴 # 𝐵) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
31 | 9, 30 | syl5bi 151 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(DECID 𝐴 #
𝐵 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
32 | 21, 31 | impbid 128 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) ↔ DECID 𝐴 # 𝐵)) |