Proof of Theorem nn01to3
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simp2 1000 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → 1 ≤ 𝑁) | 
| 2 |   | simp1 999 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → 𝑁 ∈
ℕ0) | 
| 3 |   | 1z 9352 | 
. . . . . . . . 9
⊢ 1 ∈
ℤ | 
| 4 |   | nn0z 9346 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) | 
| 5 |   | zleloe 9373 | 
. . . . . . . . 9
⊢ ((1
∈ ℤ ∧ 𝑁
∈ ℤ) → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁))) | 
| 6 | 3, 4, 5 | sylancr 414 | 
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (1 ≤ 𝑁 ↔ (1
< 𝑁 ∨ 1 = 𝑁))) | 
| 7 | 2, 6 | syl 14 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁))) | 
| 8 | 1, 7 | mpbid 147 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → (1 < 𝑁 ∨ 1 = 𝑁)) | 
| 9 |   | 1nn0 9265 | 
. . . . . . . . . . 11
⊢ 1 ∈
ℕ0 | 
| 10 |   | nn0ltp1le 9388 | 
. . . . . . . . . . 11
⊢ ((1
∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (1 <
𝑁 ↔ (1 + 1) ≤ 𝑁)) | 
| 11 | 9, 10 | mpan 424 | 
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (1 < 𝑁 ↔ (1
+ 1) ≤ 𝑁)) | 
| 12 |   | df-2 9049 | 
. . . . . . . . . . 11
⊢ 2 = (1 +
1) | 
| 13 | 12 | breq1i 4040 | 
. . . . . . . . . 10
⊢ (2 ≤
𝑁 ↔ (1 + 1) ≤ 𝑁) | 
| 14 | 11, 13 | bitr4di 198 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (1 < 𝑁 ↔ 2
≤ 𝑁)) | 
| 15 |   | 2z 9354 | 
. . . . . . . . . 10
⊢ 2 ∈
ℤ | 
| 16 |   | zleloe 9373 | 
. . . . . . . . . 10
⊢ ((2
∈ ℤ ∧ 𝑁
∈ ℤ) → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁))) | 
| 17 | 15, 4, 16 | sylancr 414 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (2 ≤ 𝑁 ↔ (2
< 𝑁 ∨ 2 = 𝑁))) | 
| 18 | 14, 17 | bitrd 188 | 
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (1 < 𝑁 ↔ (2
< 𝑁 ∨ 2 = 𝑁))) | 
| 19 | 18 | orbi1d 792 | 
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ ((1 < 𝑁 ∨ 1 =
𝑁) ↔ ((2 < 𝑁 ∨ 2 = 𝑁) ∨ 1 = 𝑁))) | 
| 20 | 2, 19 | syl 14 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → ((1 < 𝑁 ∨ 1 = 𝑁) ↔ ((2 < 𝑁 ∨ 2 = 𝑁) ∨ 1 = 𝑁))) | 
| 21 | 8, 20 | mpbid 147 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → ((2 < 𝑁 ∨ 2 = 𝑁) ∨ 1 = 𝑁)) | 
| 22 | 21 | orcomd 730 | 
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → (1 = 𝑁 ∨ (2 < 𝑁 ∨ 2 = 𝑁))) | 
| 23 |   | orcom 729 | 
. . . . 5
⊢ ((2 <
𝑁 ∨ 2 = 𝑁) ↔ (2 = 𝑁 ∨ 2 < 𝑁)) | 
| 24 | 23 | orbi2i 763 | 
. . . 4
⊢ ((1 =
𝑁 ∨ (2 < 𝑁 ∨ 2 = 𝑁)) ↔ (1 = 𝑁 ∨ (2 = 𝑁 ∨ 2 < 𝑁))) | 
| 25 | 22, 24 | sylib 122 | 
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → (1 = 𝑁 ∨ (2 = 𝑁 ∨ 2 < 𝑁))) | 
| 26 |   | 3orass 983 | 
. . 3
⊢ ((1 =
𝑁 ∨ 2 = 𝑁 ∨ 2 < 𝑁) ↔ (1 = 𝑁 ∨ (2 = 𝑁 ∨ 2 < 𝑁))) | 
| 27 | 25, 26 | sylibr 134 | 
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → (1 = 𝑁 ∨ 2 = 𝑁 ∨ 2 < 𝑁)) | 
| 28 |   | 3mix1 1168 | 
. . . . 5
⊢ (𝑁 = 1 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)) | 
| 29 | 28 | eqcoms 2199 | 
. . . 4
⊢ (1 =
𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)) | 
| 30 | 29 | a1i 9 | 
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → (1 = 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))) | 
| 31 |   | 3mix2 1169 | 
. . . . 5
⊢ (𝑁 = 2 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)) | 
| 32 | 31 | eqcoms 2199 | 
. . . 4
⊢ (2 =
𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)) | 
| 33 | 32 | a1i 9 | 
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → (2 = 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))) | 
| 34 |   | simp3 1001 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → 𝑁 ≤ 3) | 
| 35 | 34 | biantrurd 305 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → (3 ≤ 𝑁 ↔ (𝑁 ≤ 3 ∧ 3 ≤ 𝑁))) | 
| 36 |   | 2nn0 9266 | 
. . . . . . . 8
⊢ 2 ∈
ℕ0 | 
| 37 |   | nn0ltp1le 9388 | 
. . . . . . . 8
⊢ ((2
∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (2 <
𝑁 ↔ (2 + 1) ≤ 𝑁)) | 
| 38 | 36, 37 | mpan 424 | 
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (2 < 𝑁 ↔ (2
+ 1) ≤ 𝑁)) | 
| 39 |   | df-3 9050 | 
. . . . . . . 8
⊢ 3 = (2 +
1) | 
| 40 | 39 | breq1i 4040 | 
. . . . . . 7
⊢ (3 ≤
𝑁 ↔ (2 + 1) ≤ 𝑁) | 
| 41 | 38, 40 | bitr4di 198 | 
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (2 < 𝑁 ↔ 3
≤ 𝑁)) | 
| 42 | 2, 41 | syl 14 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → (2 < 𝑁 ↔ 3 ≤ 𝑁)) | 
| 43 | 2 | nn0red 9303 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → 𝑁 ∈
ℝ) | 
| 44 |   | 3re 9064 | 
. . . . . 6
⊢ 3 ∈
ℝ | 
| 45 |   | letri3 8107 | 
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ 3 ∈
ℝ) → (𝑁 = 3
↔ (𝑁 ≤ 3 ∧ 3
≤ 𝑁))) | 
| 46 | 43, 44, 45 | sylancl 413 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → (𝑁 = 3 ↔ (𝑁 ≤ 3 ∧ 3 ≤ 𝑁))) | 
| 47 | 35, 42, 46 | 3bitr4d 220 | 
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → (2 < 𝑁 ↔ 𝑁 = 3)) | 
| 48 |   | 3mix3 1170 | 
. . . 4
⊢ (𝑁 = 3 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)) | 
| 49 | 47, 48 | biimtrdi 163 | 
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → (2 < 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))) | 
| 50 | 30, 33, 49 | 3jaod 1315 | 
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → ((1 = 𝑁 ∨ 2 = 𝑁 ∨ 2 < 𝑁) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))) | 
| 51 | 27, 50 | mpd 13 | 
1
⊢ ((𝑁 ∈ ℕ0
∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)) |