ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn01to3 GIF version

Theorem nn01to3 9576
Description: A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
Assertion
Ref Expression
nn01to3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))

Proof of Theorem nn01to3
StepHypRef Expression
1 simp2 993 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 1 ≤ 𝑁)
2 simp1 992 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ∈ ℕ0)
3 1z 9238 . . . . . . . . 9 1 ∈ ℤ
4 nn0z 9232 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
5 zleloe 9259 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
63, 4, 5sylancr 412 . . . . . . . 8 (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
72, 6syl 14 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
81, 7mpbid 146 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 < 𝑁 ∨ 1 = 𝑁))
9 1nn0 9151 . . . . . . . . . . 11 1 ∈ ℕ0
10 nn0ltp1le 9274 . . . . . . . . . . 11 ((1 ∈ ℕ0𝑁 ∈ ℕ0) → (1 < 𝑁 ↔ (1 + 1) ≤ 𝑁))
119, 10mpan 422 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (1 + 1) ≤ 𝑁))
12 df-2 8937 . . . . . . . . . . 11 2 = (1 + 1)
1312breq1i 3996 . . . . . . . . . 10 (2 ≤ 𝑁 ↔ (1 + 1) ≤ 𝑁)
1411, 13bitr4di 197 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ 2 ≤ 𝑁))
15 2z 9240 . . . . . . . . . 10 2 ∈ ℤ
16 zleloe 9259 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
1715, 4, 16sylancr 412 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
1814, 17bitrd 187 . . . . . . . 8 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
1918orbi1d 786 . . . . . . 7 (𝑁 ∈ ℕ0 → ((1 < 𝑁 ∨ 1 = 𝑁) ↔ ((2 < 𝑁 ∨ 2 = 𝑁) ∨ 1 = 𝑁)))
202, 19syl 14 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → ((1 < 𝑁 ∨ 1 = 𝑁) ↔ ((2 < 𝑁 ∨ 2 = 𝑁) ∨ 1 = 𝑁)))
218, 20mpbid 146 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → ((2 < 𝑁 ∨ 2 = 𝑁) ∨ 1 = 𝑁))
2221orcomd 724 . . . 4 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 = 𝑁 ∨ (2 < 𝑁 ∨ 2 = 𝑁)))
23 orcom 723 . . . . 5 ((2 < 𝑁 ∨ 2 = 𝑁) ↔ (2 = 𝑁 ∨ 2 < 𝑁))
2423orbi2i 757 . . . 4 ((1 = 𝑁 ∨ (2 < 𝑁 ∨ 2 = 𝑁)) ↔ (1 = 𝑁 ∨ (2 = 𝑁 ∨ 2 < 𝑁)))
2522, 24sylib 121 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 = 𝑁 ∨ (2 = 𝑁 ∨ 2 < 𝑁)))
26 3orass 976 . . 3 ((1 = 𝑁 ∨ 2 = 𝑁 ∨ 2 < 𝑁) ↔ (1 = 𝑁 ∨ (2 = 𝑁 ∨ 2 < 𝑁)))
2725, 26sylibr 133 . 2 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 = 𝑁 ∨ 2 = 𝑁 ∨ 2 < 𝑁))
28 3mix1 1161 . . . . 5 (𝑁 = 1 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
2928eqcoms 2173 . . . 4 (1 = 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
3029a1i 9 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 = 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
31 3mix2 1162 . . . . 5 (𝑁 = 2 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
3231eqcoms 2173 . . . 4 (2 = 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
3332a1i 9 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (2 = 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
34 simp3 994 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ≤ 3)
3534biantrurd 303 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (3 ≤ 𝑁 ↔ (𝑁 ≤ 3 ∧ 3 ≤ 𝑁)))
36 2nn0 9152 . . . . . . . 8 2 ∈ ℕ0
37 nn0ltp1le 9274 . . . . . . . 8 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 < 𝑁 ↔ (2 + 1) ≤ 𝑁))
3836, 37mpan 422 . . . . . . 7 (𝑁 ∈ ℕ0 → (2 < 𝑁 ↔ (2 + 1) ≤ 𝑁))
39 df-3 8938 . . . . . . . 8 3 = (2 + 1)
4039breq1i 3996 . . . . . . 7 (3 ≤ 𝑁 ↔ (2 + 1) ≤ 𝑁)
4138, 40bitr4di 197 . . . . . 6 (𝑁 ∈ ℕ0 → (2 < 𝑁 ↔ 3 ≤ 𝑁))
422, 41syl 14 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (2 < 𝑁 ↔ 3 ≤ 𝑁))
432nn0red 9189 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ∈ ℝ)
44 3re 8952 . . . . . 6 3 ∈ ℝ
45 letri3 8000 . . . . . 6 ((𝑁 ∈ ℝ ∧ 3 ∈ ℝ) → (𝑁 = 3 ↔ (𝑁 ≤ 3 ∧ 3 ≤ 𝑁)))
4643, 44, 45sylancl 411 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 3 ↔ (𝑁 ≤ 3 ∧ 3 ≤ 𝑁)))
4735, 42, 463bitr4d 219 . . . 4 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (2 < 𝑁𝑁 = 3))
48 3mix3 1163 . . . 4 (𝑁 = 3 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
4947, 48syl6bi 162 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (2 < 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
5030, 33, 493jaod 1299 . 2 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → ((1 = 𝑁 ∨ 2 = 𝑁 ∨ 2 < 𝑁) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
5127, 50mpd 13 1 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703  w3o 972  w3a 973   = wceq 1348  wcel 2141   class class class wbr 3989  (class class class)co 5853  cr 7773  1c1 7775   + caddc 7777   < clt 7954  cle 7955  2c2 8929  3c3 8930  0cn0 9135  cz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-2 8937  df-3 8938  df-n0 9136  df-z 9213
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator