ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn0z GIF version

Theorem elnn0z 8919
Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
elnn0z (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))

Proof of Theorem elnn0z
StepHypRef Expression
1 nn0re 8838 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2 elnn0 8831 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
32biimpi 119 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
43orcomd 689 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ))
5 3mix1 1118 . . . . . 6 (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
6 3mix2 1119 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
75, 6jaoi 677 . . . . 5 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
84, 7syl 14 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
9 elz 8908 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
101, 8, 9sylanbrc 411 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
11 nn0ge0 8854 . . 3 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
1210, 11jca 302 . 2 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
139simprbi 271 . . . 4 (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
1413adantr 272 . . 3 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
15 0nn0 8844 . . . . . 6 0 ∈ ℕ0
16 eleq1 2162 . . . . . 6 (𝑁 = 0 → (𝑁 ∈ ℕ0 ↔ 0 ∈ ℕ0))
1715, 16mpbiri 167 . . . . 5 (𝑁 = 0 → 𝑁 ∈ ℕ0)
1817a1i 9 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 = 0 → 𝑁 ∈ ℕ0))
19 nnnn0 8836 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2019a1i 9 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0))
21 simpr 109 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 0 ≤ 𝑁)
22 0red 7639 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 0 ∈ ℝ)
23 zre 8910 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2423adantr 272 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℝ)
2522, 24lenltd 7751 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (0 ≤ 𝑁 ↔ ¬ 𝑁 < 0))
2621, 25mpbid 146 . . . . . 6 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ¬ 𝑁 < 0)
27 nngt0 8603 . . . . . . 7 (-𝑁 ∈ ℕ → 0 < -𝑁)
2824lt0neg1d 8144 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 < 0 ↔ 0 < -𝑁))
2927, 28syl5ibr 155 . . . . . 6 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (-𝑁 ∈ ℕ → 𝑁 < 0))
3026, 29mtod 630 . . . . 5 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ¬ -𝑁 ∈ ℕ)
3130pm2.21d 589 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (-𝑁 ∈ ℕ → 𝑁 ∈ ℕ0))
3218, 20, 313jaod 1250 . . 3 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0))
3314, 32mpd 13 . 2 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℕ0)
3412, 33impbii 125 1 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 670  w3o 929   = wceq 1299  wcel 1448   class class class wbr 3875  cr 7499  0cc0 7500   < clt 7672  cle 7673  -cneg 7805  cn 8578  0cn0 8829  cz 8906
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-n0 8830  df-z 8907
This theorem is referenced by:  nn0zrab  8931  znn0sub  8971  nn0ind  9017  fnn0ind  9019  fznn0  9734  elfz0ubfz0  9743  elfz0fzfz0  9744  fz0fzelfz0  9745  elfzmlbp  9750  difelfzle  9752  difelfznle  9753  elfzo0z  9802  fzofzim  9806  ubmelm1fzo  9844  flqge0nn0  9907  zmodcl  9958  modqmuladdnn0  9982  modsumfzodifsn  10010  uzennn  10050  zsqcl2  10211  nn0abscl  10697  geolim2  11120  cvgratnnlemabsle  11135  oexpneg  11369  oddnn02np1  11372  evennn02n  11374  nn0ehalf  11395  nn0oddm1d2  11401  divalgb  11417  dfgcd2  11495  algcvga  11525  hashgcdlem  11695  ennnfoneleminc  11716
  Copyright terms: Public domain W3C validator