![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elnn0z | GIF version |
Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
elnn0z | ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 9249 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | elnn0 9242 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
3 | 2 | biimpi 120 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
4 | 3 | orcomd 730 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ)) |
5 | 3mix1 1168 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) | |
6 | 3mix2 1169 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) | |
7 | 5, 6 | jaoi 717 | . . . . 5 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
8 | 4, 7 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
9 | elz 9319 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
10 | 1, 8, 9 | sylanbrc 417 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) |
11 | nn0ge0 9265 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
12 | 10, 11 | jca 306 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) |
13 | 9 | simprbi 275 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
14 | 13 | adantr 276 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
15 | 0nn0 9255 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
16 | eleq1 2256 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 ∈ ℕ0 ↔ 0 ∈ ℕ0)) | |
17 | 15, 16 | mpbiri 168 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 ∈ ℕ0) |
18 | 17 | a1i 9 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 = 0 → 𝑁 ∈ ℕ0)) |
19 | nnnn0 9247 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
20 | 19 | a1i 9 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)) |
21 | simpr 110 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 0 ≤ 𝑁) | |
22 | 0red 8020 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 0 ∈ ℝ) | |
23 | zre 9321 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
24 | 23 | adantr 276 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℝ) |
25 | 22, 24 | lenltd 8137 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (0 ≤ 𝑁 ↔ ¬ 𝑁 < 0)) |
26 | 21, 25 | mpbid 147 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ¬ 𝑁 < 0) |
27 | nngt0 9007 | . . . . . . 7 ⊢ (-𝑁 ∈ ℕ → 0 < -𝑁) | |
28 | 24 | lt0neg1d 8534 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 < 0 ↔ 0 < -𝑁)) |
29 | 27, 28 | imbitrrid 156 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (-𝑁 ∈ ℕ → 𝑁 < 0)) |
30 | 26, 29 | mtod 664 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ¬ -𝑁 ∈ ℕ) |
31 | 30 | pm2.21d 620 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (-𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)) |
32 | 18, 20, 31 | 3jaod 1315 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)) |
33 | 14, 32 | mpd 13 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℕ0) |
34 | 12, 33 | impbii 126 | 1 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ℝcr 7871 0cc0 7872 < clt 8054 ≤ cle 8055 -cneg 8191 ℕcn 8982 ℕ0cn0 9240 ℤcz 9317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 |
This theorem is referenced by: nn0zrab 9342 znn0sub 9382 nn0ind 9431 fnn0ind 9433 fznn0 10179 elfz0ubfz0 10191 elfz0fzfz0 10192 fz0fzelfz0 10193 elfzmlbp 10198 difelfzle 10200 difelfznle 10201 elfzo0z 10251 fzofzim 10255 ubmelm1fzo 10293 flqge0nn0 10362 zmodcl 10415 modqmuladdnn0 10439 modsumfzodifsn 10467 uzennn 10507 zsqcl2 10688 iswrdiz 10921 nn0abscl 11229 geolim2 11655 cvgratnnlemabsle 11670 oexpneg 12018 oddnn02np1 12021 evennn02n 12023 nn0ehalf 12044 nn0oddm1d2 12050 divalgb 12066 dfgcd2 12151 uzwodc 12174 algcvga 12189 hashgcdlem 12376 pockthlem 12494 4sqlem14 12542 ennnfoneleminc 12568 gausslemma2dlem0h 15172 |
Copyright terms: Public domain | W3C validator |