Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn0z GIF version

Theorem elnn0z 9079
 Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
elnn0z (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))

Proof of Theorem elnn0z
StepHypRef Expression
1 nn0re 8998 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2 elnn0 8991 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
32biimpi 119 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
43orcomd 718 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ))
5 3mix1 1150 . . . . . 6 (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
6 3mix2 1151 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
75, 6jaoi 705 . . . . 5 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
84, 7syl 14 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
9 elz 9068 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
101, 8, 9sylanbrc 413 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
11 nn0ge0 9014 . . 3 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
1210, 11jca 304 . 2 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
139simprbi 273 . . . 4 (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
1413adantr 274 . . 3 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
15 0nn0 9004 . . . . . 6 0 ∈ ℕ0
16 eleq1 2202 . . . . . 6 (𝑁 = 0 → (𝑁 ∈ ℕ0 ↔ 0 ∈ ℕ0))
1715, 16mpbiri 167 . . . . 5 (𝑁 = 0 → 𝑁 ∈ ℕ0)
1817a1i 9 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 = 0 → 𝑁 ∈ ℕ0))
19 nnnn0 8996 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2019a1i 9 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0))
21 simpr 109 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 0 ≤ 𝑁)
22 0red 7779 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 0 ∈ ℝ)
23 zre 9070 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2423adantr 274 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℝ)
2522, 24lenltd 7892 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (0 ≤ 𝑁 ↔ ¬ 𝑁 < 0))
2621, 25mpbid 146 . . . . . 6 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ¬ 𝑁 < 0)
27 nngt0 8757 . . . . . . 7 (-𝑁 ∈ ℕ → 0 < -𝑁)
2824lt0neg1d 8289 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 < 0 ↔ 0 < -𝑁))
2927, 28syl5ibr 155 . . . . . 6 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (-𝑁 ∈ ℕ → 𝑁 < 0))
3026, 29mtod 652 . . . . 5 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ¬ -𝑁 ∈ ℕ)
3130pm2.21d 608 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (-𝑁 ∈ ℕ → 𝑁 ∈ ℕ0))
3218, 20, 313jaod 1282 . . 3 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0))
3314, 32mpd 13 . 2 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℕ0)
3412, 33impbii 125 1 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 697   ∨ w3o 961   = wceq 1331   ∈ wcel 1480   class class class wbr 3929  ℝcr 7631  0cc0 7632   < clt 7812   ≤ cle 7813  -cneg 7946  ℕcn 8732  ℕ0cn0 8989  ℤcz 9066 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-ltadd 7748 This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-inn 8733  df-n0 8990  df-z 9067 This theorem is referenced by:  nn0zrab  9091  znn0sub  9131  nn0ind  9177  fnn0ind  9179  fznn0  9905  elfz0ubfz0  9914  elfz0fzfz0  9915  fz0fzelfz0  9916  elfzmlbp  9921  difelfzle  9923  difelfznle  9924  elfzo0z  9973  fzofzim  9977  ubmelm1fzo  10015  flqge0nn0  10078  zmodcl  10129  modqmuladdnn0  10153  modsumfzodifsn  10181  uzennn  10221  zsqcl2  10382  nn0abscl  10869  geolim2  11293  cvgratnnlemabsle  11308  oexpneg  11585  oddnn02np1  11588  evennn02n  11590  nn0ehalf  11611  nn0oddm1d2  11617  divalgb  11633  dfgcd2  11713  algcvga  11743  hashgcdlem  11914  ennnfoneleminc  11935
 Copyright terms: Public domain W3C validator