| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnn0z | GIF version | ||
| Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| elnn0z | ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 9374 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 2 | elnn0 9367 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 3 | 2 | biimpi 120 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
| 4 | 3 | orcomd 734 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ)) |
| 5 | 3mix1 1190 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) | |
| 6 | 3mix2 1191 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) | |
| 7 | 5, 6 | jaoi 721 | . . . . 5 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
| 8 | 4, 7 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
| 9 | elz 9444 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 10 | 1, 8, 9 | sylanbrc 417 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) |
| 11 | nn0ge0 9390 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
| 12 | 10, 11 | jca 306 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) |
| 13 | 9 | simprbi 275 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
| 14 | 13 | adantr 276 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
| 15 | 0nn0 9380 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 16 | eleq1 2292 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 ∈ ℕ0 ↔ 0 ∈ ℕ0)) | |
| 17 | 15, 16 | mpbiri 168 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 ∈ ℕ0) |
| 18 | 17 | a1i 9 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 = 0 → 𝑁 ∈ ℕ0)) |
| 19 | nnnn0 9372 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 20 | 19 | a1i 9 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)) |
| 21 | simpr 110 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 0 ≤ 𝑁) | |
| 22 | 0red 8143 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 0 ∈ ℝ) | |
| 23 | zre 9446 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 24 | 23 | adantr 276 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℝ) |
| 25 | 22, 24 | lenltd 8260 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (0 ≤ 𝑁 ↔ ¬ 𝑁 < 0)) |
| 26 | 21, 25 | mpbid 147 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ¬ 𝑁 < 0) |
| 27 | nngt0 9131 | . . . . . . 7 ⊢ (-𝑁 ∈ ℕ → 0 < -𝑁) | |
| 28 | 24 | lt0neg1d 8658 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 < 0 ↔ 0 < -𝑁)) |
| 29 | 27, 28 | imbitrrid 156 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (-𝑁 ∈ ℕ → 𝑁 < 0)) |
| 30 | 26, 29 | mtod 667 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ¬ -𝑁 ∈ ℕ) |
| 31 | 30 | pm2.21d 622 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (-𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)) |
| 32 | 18, 20, 31 | 3jaod 1338 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)) |
| 33 | 14, 32 | mpd 13 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℕ0) |
| 34 | 12, 33 | impbii 126 | 1 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 ∨ w3o 1001 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ℝcr 7994 0cc0 7995 < clt 8177 ≤ cle 8178 -cneg 8314 ℕcn 9106 ℕ0cn0 9365 ℤcz 9442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 |
| This theorem is referenced by: nn0zrab 9467 znn0sub 9508 nn0ind 9557 fnn0ind 9559 fznn0 10305 elfz0ubfz0 10317 elfz0fzfz0 10318 fz0fzelfz0 10319 elfzmlbp 10324 difelfzle 10326 difelfznle 10327 elfzo0z 10380 fzofzim 10384 ubmelm1fzo 10427 flqge0nn0 10508 zmodcl 10561 modqmuladdnn0 10585 modsumfzodifsn 10613 uzennn 10653 zsqcl2 10834 iswrdiz 11073 swrdswrdlem 11231 swrdswrd 11232 swrdccatin2 11256 pfxccatin12lem2 11258 pfxccatin12lem3 11259 nn0abscl 11591 nn0maxcl 11731 geolim2 12018 cvgratnnlemabsle 12033 oexpneg 12383 oddnn02np1 12386 evennn02n 12388 nn0ehalf 12409 nn0oddm1d2 12415 divalgb 12431 bitsinv1lem 12467 dfgcd2 12530 uzwodc 12553 algcvga 12568 hashgcdlem 12755 pockthlem 12874 4sqlem14 12922 ennnfoneleminc 12977 gausslemma2dlem0h 15729 |
| Copyright terms: Public domain | W3C validator |