![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elnn0z | GIF version |
Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
elnn0z | ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 8838 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | elnn0 8831 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
3 | 2 | biimpi 119 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
4 | 3 | orcomd 689 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ)) |
5 | 3mix1 1118 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) | |
6 | 3mix2 1119 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) | |
7 | 5, 6 | jaoi 677 | . . . . 5 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
8 | 4, 7 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
9 | elz 8908 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
10 | 1, 8, 9 | sylanbrc 411 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) |
11 | nn0ge0 8854 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
12 | 10, 11 | jca 302 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) |
13 | 9 | simprbi 271 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
14 | 13 | adantr 272 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
15 | 0nn0 8844 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
16 | eleq1 2162 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 ∈ ℕ0 ↔ 0 ∈ ℕ0)) | |
17 | 15, 16 | mpbiri 167 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 ∈ ℕ0) |
18 | 17 | a1i 9 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 = 0 → 𝑁 ∈ ℕ0)) |
19 | nnnn0 8836 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
20 | 19 | a1i 9 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)) |
21 | simpr 109 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 0 ≤ 𝑁) | |
22 | 0red 7639 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 0 ∈ ℝ) | |
23 | zre 8910 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
24 | 23 | adantr 272 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℝ) |
25 | 22, 24 | lenltd 7751 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (0 ≤ 𝑁 ↔ ¬ 𝑁 < 0)) |
26 | 21, 25 | mpbid 146 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ¬ 𝑁 < 0) |
27 | nngt0 8603 | . . . . . . 7 ⊢ (-𝑁 ∈ ℕ → 0 < -𝑁) | |
28 | 24 | lt0neg1d 8144 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 < 0 ↔ 0 < -𝑁)) |
29 | 27, 28 | syl5ibr 155 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (-𝑁 ∈ ℕ → 𝑁 < 0)) |
30 | 26, 29 | mtod 630 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ¬ -𝑁 ∈ ℕ) |
31 | 30 | pm2.21d 589 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (-𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)) |
32 | 18, 20, 31 | 3jaod 1250 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)) |
33 | 14, 32 | mpd 13 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℕ0) |
34 | 12, 33 | impbii 125 | 1 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 670 ∨ w3o 929 = wceq 1299 ∈ wcel 1448 class class class wbr 3875 ℝcr 7499 0cc0 7500 < clt 7672 ≤ cle 7673 -cneg 7805 ℕcn 8578 ℕ0cn0 8829 ℤcz 8906 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-addcom 7595 ax-addass 7597 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-0id 7603 ax-rnegex 7604 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-ltadd 7611 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-br 3876 df-opab 3930 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-iota 5024 df-fun 5061 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-inn 8579 df-n0 8830 df-z 8907 |
This theorem is referenced by: nn0zrab 8931 znn0sub 8971 nn0ind 9017 fnn0ind 9019 fznn0 9734 elfz0ubfz0 9743 elfz0fzfz0 9744 fz0fzelfz0 9745 elfzmlbp 9750 difelfzle 9752 difelfznle 9753 elfzo0z 9802 fzofzim 9806 ubmelm1fzo 9844 flqge0nn0 9907 zmodcl 9958 modqmuladdnn0 9982 modsumfzodifsn 10010 uzennn 10050 zsqcl2 10211 nn0abscl 10697 geolim2 11120 cvgratnnlemabsle 11135 oexpneg 11369 oddnn02np1 11372 evennn02n 11374 nn0ehalf 11395 nn0oddm1d2 11401 divalgb 11417 dfgcd2 11495 algcvga 11525 hashgcdlem 11695 ennnfoneleminc 11716 |
Copyright terms: Public domain | W3C validator |