ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn0z GIF version

Theorem elnn0z 9214
Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
elnn0z (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))

Proof of Theorem elnn0z
StepHypRef Expression
1 nn0re 9133 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2 elnn0 9126 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
32biimpi 119 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
43orcomd 724 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ))
5 3mix1 1161 . . . . . 6 (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
6 3mix2 1162 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
75, 6jaoi 711 . . . . 5 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
84, 7syl 14 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
9 elz 9203 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
101, 8, 9sylanbrc 415 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
11 nn0ge0 9149 . . 3 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
1210, 11jca 304 . 2 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
139simprbi 273 . . . 4 (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
1413adantr 274 . . 3 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
15 0nn0 9139 . . . . . 6 0 ∈ ℕ0
16 eleq1 2233 . . . . . 6 (𝑁 = 0 → (𝑁 ∈ ℕ0 ↔ 0 ∈ ℕ0))
1715, 16mpbiri 167 . . . . 5 (𝑁 = 0 → 𝑁 ∈ ℕ0)
1817a1i 9 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 = 0 → 𝑁 ∈ ℕ0))
19 nnnn0 9131 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2019a1i 9 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0))
21 simpr 109 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 0 ≤ 𝑁)
22 0red 7910 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 0 ∈ ℝ)
23 zre 9205 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2423adantr 274 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℝ)
2522, 24lenltd 8026 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (0 ≤ 𝑁 ↔ ¬ 𝑁 < 0))
2621, 25mpbid 146 . . . . . 6 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ¬ 𝑁 < 0)
27 nngt0 8892 . . . . . . 7 (-𝑁 ∈ ℕ → 0 < -𝑁)
2824lt0neg1d 8423 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 < 0 ↔ 0 < -𝑁))
2927, 28syl5ibr 155 . . . . . 6 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (-𝑁 ∈ ℕ → 𝑁 < 0))
3026, 29mtod 658 . . . . 5 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ¬ -𝑁 ∈ ℕ)
3130pm2.21d 614 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (-𝑁 ∈ ℕ → 𝑁 ∈ ℕ0))
3218, 20, 313jaod 1299 . . 3 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0))
3314, 32mpd 13 . 2 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℕ0)
3412, 33impbii 125 1 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  w3o 972   = wceq 1348  wcel 2141   class class class wbr 3987  cr 7762  0cc0 7763   < clt 7943  cle 7944  -cneg 8080  cn 8867  0cn0 9124  cz 9201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-addcom 7863  ax-addass 7865  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-0id 7871  ax-rnegex 7872  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-ltadd 7879
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-iota 5158  df-fun 5198  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-inn 8868  df-n0 9125  df-z 9202
This theorem is referenced by:  nn0zrab  9226  znn0sub  9266  nn0ind  9315  fnn0ind  9317  fznn0  10058  elfz0ubfz0  10070  elfz0fzfz0  10071  fz0fzelfz0  10072  elfzmlbp  10077  difelfzle  10079  difelfznle  10080  elfzo0z  10129  fzofzim  10133  ubmelm1fzo  10171  flqge0nn0  10238  zmodcl  10289  modqmuladdnn0  10313  modsumfzodifsn  10341  uzennn  10381  zsqcl2  10542  nn0abscl  11038  geolim2  11464  cvgratnnlemabsle  11479  oexpneg  11825  oddnn02np1  11828  evennn02n  11830  nn0ehalf  11851  nn0oddm1d2  11857  divalgb  11873  dfgcd2  11958  uzwodc  11981  algcvga  11994  hashgcdlem  12181  pockthlem  12297  ennnfoneleminc  12355
  Copyright terms: Public domain W3C validator