ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0le2is012 GIF version

Theorem nn0le2is012 9337
Description: A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.)
Assertion
Ref Expression
nn0le2is012 ((𝑁 ∈ ℕ0𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))

Proof of Theorem nn0le2is012
StepHypRef Expression
1 nn0z 9275 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 2z 9283 . . . 4 2 ∈ ℤ
3 zleloe 9302 . . . 4 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 ≤ 2 ↔ (𝑁 < 2 ∨ 𝑁 = 2)))
41, 2, 3sylancl 413 . . 3 (𝑁 ∈ ℕ0 → (𝑁 ≤ 2 ↔ (𝑁 < 2 ∨ 𝑁 = 2)))
5 zltlem1 9312 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
61, 2, 5sylancl 413 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
7 2m1e1 9039 . . . . . . . . . 10 (2 − 1) = 1
87a1i 9 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2 − 1) = 1)
98breq2d 4017 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1))
106, 9bitrd 188 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1))
11 1z 9281 . . . . . . . . 9 1 ∈ ℤ
12 zleloe 9302 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 ≤ 1 ↔ (𝑁 < 1 ∨ 𝑁 = 1)))
131, 11, 12sylancl 413 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 ↔ (𝑁 < 1 ∨ 𝑁 = 1)))
14 nn0lt10b 9335 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0))
15 3mix1 1166 . . . . . . . . . . . 12 (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
1614, 15biimtrdi 163 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
1716com12 30 . . . . . . . . . 10 (𝑁 < 1 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
18 3mix2 1167 . . . . . . . . . . 11 (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
1918a1d 22 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2017, 19jaoi 716 . . . . . . . . 9 ((𝑁 < 1 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2120com12 30 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 < 1 ∨ 𝑁 = 1) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2213, 21sylbid 150 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2310, 22sylbid 150 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2423com12 30 . . . . 5 (𝑁 < 2 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
25 3mix3 1168 . . . . . 6 (𝑁 = 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
2625a1d 22 . . . . 5 (𝑁 = 2 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2724, 26jaoi 716 . . . 4 ((𝑁 < 2 ∨ 𝑁 = 2) → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2827com12 30 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 < 2 ∨ 𝑁 = 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
294, 28sylbid 150 . 2 (𝑁 ∈ ℕ0 → (𝑁 ≤ 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
3029imp 124 1 ((𝑁 ∈ ℕ0𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  w3o 977   = wceq 1353  wcel 2148   class class class wbr 4005  (class class class)co 5877  0cc0 7813  1c1 7814   < clt 7994  cle 7995  cmin 8130  2c2 8972  0cn0 9178  cz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-2 8980  df-n0 9179  df-z 9256
This theorem is referenced by:  xnn0le2is012  9868
  Copyright terms: Public domain W3C validator