ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0le2is012 GIF version

Theorem nn0le2is012 9399
Description: A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.)
Assertion
Ref Expression
nn0le2is012 ((𝑁 ∈ ℕ0𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))

Proof of Theorem nn0le2is012
StepHypRef Expression
1 nn0z 9337 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 2z 9345 . . . 4 2 ∈ ℤ
3 zleloe 9364 . . . 4 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 ≤ 2 ↔ (𝑁 < 2 ∨ 𝑁 = 2)))
41, 2, 3sylancl 413 . . 3 (𝑁 ∈ ℕ0 → (𝑁 ≤ 2 ↔ (𝑁 < 2 ∨ 𝑁 = 2)))
5 zltlem1 9374 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
61, 2, 5sylancl 413 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
7 2m1e1 9100 . . . . . . . . . 10 (2 − 1) = 1
87a1i 9 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2 − 1) = 1)
98breq2d 4041 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1))
106, 9bitrd 188 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1))
11 1z 9343 . . . . . . . . 9 1 ∈ ℤ
12 zleloe 9364 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 ≤ 1 ↔ (𝑁 < 1 ∨ 𝑁 = 1)))
131, 11, 12sylancl 413 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 ↔ (𝑁 < 1 ∨ 𝑁 = 1)))
14 nn0lt10b 9397 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0))
15 3mix1 1168 . . . . . . . . . . . 12 (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
1614, 15biimtrdi 163 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
1716com12 30 . . . . . . . . . 10 (𝑁 < 1 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
18 3mix2 1169 . . . . . . . . . . 11 (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
1918a1d 22 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2017, 19jaoi 717 . . . . . . . . 9 ((𝑁 < 1 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2120com12 30 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 < 1 ∨ 𝑁 = 1) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2213, 21sylbid 150 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2310, 22sylbid 150 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2423com12 30 . . . . 5 (𝑁 < 2 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
25 3mix3 1170 . . . . . 6 (𝑁 = 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
2625a1d 22 . . . . 5 (𝑁 = 2 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2724, 26jaoi 717 . . . 4 ((𝑁 < 2 ∨ 𝑁 = 2) → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2827com12 30 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 < 2 ∨ 𝑁 = 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
294, 28sylbid 150 . 2 (𝑁 ∈ ℕ0 → (𝑁 ≤ 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
3029imp 124 1 ((𝑁 ∈ ℕ0𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3o 979   = wceq 1364  wcel 2164   class class class wbr 4029  (class class class)co 5918  0cc0 7872  1c1 7873   < clt 8054  cle 8055  cmin 8190  2c2 9033  0cn0 9240  cz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318
This theorem is referenced by:  xnn0le2is012  9932
  Copyright terms: Public domain W3C validator