ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0le2is012 GIF version

Theorem nn0le2is012 9408
Description: A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.)
Assertion
Ref Expression
nn0le2is012 ((𝑁 ∈ ℕ0𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))

Proof of Theorem nn0le2is012
StepHypRef Expression
1 nn0z 9346 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 2z 9354 . . . 4 2 ∈ ℤ
3 zleloe 9373 . . . 4 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 ≤ 2 ↔ (𝑁 < 2 ∨ 𝑁 = 2)))
41, 2, 3sylancl 413 . . 3 (𝑁 ∈ ℕ0 → (𝑁 ≤ 2 ↔ (𝑁 < 2 ∨ 𝑁 = 2)))
5 zltlem1 9383 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
61, 2, 5sylancl 413 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
7 2m1e1 9108 . . . . . . . . . 10 (2 − 1) = 1
87a1i 9 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2 − 1) = 1)
98breq2d 4045 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1))
106, 9bitrd 188 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1))
11 1z 9352 . . . . . . . . 9 1 ∈ ℤ
12 zleloe 9373 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 ≤ 1 ↔ (𝑁 < 1 ∨ 𝑁 = 1)))
131, 11, 12sylancl 413 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 ↔ (𝑁 < 1 ∨ 𝑁 = 1)))
14 nn0lt10b 9406 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0))
15 3mix1 1168 . . . . . . . . . . . 12 (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
1614, 15biimtrdi 163 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
1716com12 30 . . . . . . . . . 10 (𝑁 < 1 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
18 3mix2 1169 . . . . . . . . . . 11 (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
1918a1d 22 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2017, 19jaoi 717 . . . . . . . . 9 ((𝑁 < 1 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2120com12 30 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 < 1 ∨ 𝑁 = 1) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2213, 21sylbid 150 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2310, 22sylbid 150 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2423com12 30 . . . . 5 (𝑁 < 2 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
25 3mix3 1170 . . . . . 6 (𝑁 = 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
2625a1d 22 . . . . 5 (𝑁 = 2 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2724, 26jaoi 717 . . . 4 ((𝑁 < 2 ∨ 𝑁 = 2) → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2827com12 30 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 < 2 ∨ 𝑁 = 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
294, 28sylbid 150 . 2 (𝑁 ∈ ℕ0 → (𝑁 ≤ 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
3029imp 124 1 ((𝑁 ∈ ℕ0𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3o 979   = wceq 1364  wcel 2167   class class class wbr 4033  (class class class)co 5922  0cc0 7879  1c1 7880   < clt 8061  cle 8062  cmin 8197  2c2 9041  0cn0 9249  cz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327
This theorem is referenced by:  xnn0le2is012  9941
  Copyright terms: Public domain W3C validator