Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0le2is012 | GIF version |
Description: A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.) |
Ref | Expression |
---|---|
nn0le2is012 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 9211 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
2 | 2z 9219 | . . . 4 ⊢ 2 ∈ ℤ | |
3 | zleloe 9238 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 ≤ 2 ↔ (𝑁 < 2 ∨ 𝑁 = 2))) | |
4 | 1, 2, 3 | sylancl 410 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 2 ↔ (𝑁 < 2 ∨ 𝑁 = 2))) |
5 | zltlem1 9248 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) | |
6 | 1, 2, 5 | sylancl 410 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) |
7 | 2m1e1 8975 | . . . . . . . . . 10 ⊢ (2 − 1) = 1 | |
8 | 7 | a1i 9 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (2 − 1) = 1) |
9 | 8 | breq2d 3994 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1)) |
10 | 6, 9 | bitrd 187 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1)) |
11 | 1z 9217 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
12 | zleloe 9238 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 ≤ 1 ↔ (𝑁 < 1 ∨ 𝑁 = 1))) | |
13 | 1, 11, 12 | sylancl 410 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 ↔ (𝑁 < 1 ∨ 𝑁 = 1))) |
14 | nn0lt10b 9271 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) | |
15 | 3mix1 1156 | . . . . . . . . . . . 12 ⊢ (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | |
16 | 14, 15 | syl6bi 162 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
17 | 16 | com12 30 | . . . . . . . . . 10 ⊢ (𝑁 < 1 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
18 | 3mix2 1157 | . . . . . . . . . . 11 ⊢ (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | |
19 | 18 | a1d 22 | . . . . . . . . . 10 ⊢ (𝑁 = 1 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
20 | 17, 19 | jaoi 706 | . . . . . . . . 9 ⊢ ((𝑁 < 1 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
21 | 20 | com12 30 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 < 1 ∨ 𝑁 = 1) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
22 | 13, 21 | sylbid 149 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
23 | 10, 22 | sylbid 149 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
24 | 23 | com12 30 | . . . . 5 ⊢ (𝑁 < 2 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
25 | 3mix3 1158 | . . . . . 6 ⊢ (𝑁 = 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | |
26 | 25 | a1d 22 | . . . . 5 ⊢ (𝑁 = 2 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
27 | 24, 26 | jaoi 706 | . . . 4 ⊢ ((𝑁 < 2 ∨ 𝑁 = 2) → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
28 | 27 | com12 30 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 < 2 ∨ 𝑁 = 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
29 | 4, 28 | sylbid 149 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
30 | 29 | imp 123 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 ∨ w3o 967 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 (class class class)co 5842 0cc0 7753 1c1 7754 < clt 7933 ≤ cle 7934 − cmin 8069 2c2 8908 ℕ0cn0 9114 ℤcz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-2 8916 df-n0 9115 df-z 9192 |
This theorem is referenced by: xnn0le2is012 9802 |
Copyright terms: Public domain | W3C validator |