Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsb2or | GIF version |
Description: Bound-variable hypothesis builder for substitution. Similar to hbsb2 1816 but in intuitionistic logic a disjunction is stronger than an implication. (Contributed by Jim Kingdon, 2-Feb-2018.) |
Ref | Expression |
---|---|
nfsb2or | ⊢ (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb4or 1813 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | sb2 1747 | . . . . . . 7 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) | |
3 | 2 | a5i 1523 | . . . . . 6 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥[𝑦 / 𝑥]𝜑) |
4 | 3 | imim2i 12 | . . . . 5 ⊢ (([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) |
5 | 4 | alimi 1435 | . . . 4 ⊢ (∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) |
6 | df-nf 1441 | . . . 4 ⊢ (Ⅎ𝑥[𝑦 / 𝑥]𝜑 ↔ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) | |
7 | 5, 6 | sylibr 133 | . . 3 ⊢ (∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
8 | 7 | orim2i 751 | . 2 ⊢ ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) → (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥[𝑦 / 𝑥]𝜑)) |
9 | 1, 8 | ax-mp 5 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 ∀wal 1333 Ⅎwnf 1440 [wsb 1742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 |
This theorem is referenced by: sbequi 1819 |
Copyright terms: Public domain | W3C validator |