| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsb2or | GIF version | ||
| Description: Bound-variable hypothesis builder for substitution. Similar to hbsb2 1850 but in intuitionistic logic a disjunction is stronger than an implication. (Contributed by Jim Kingdon, 2-Feb-2018.) |
| Ref | Expression |
|---|---|
| nfsb2or | ⊢ (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb4or 1847 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | sb2 1781 | . . . . . . 7 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) | |
| 3 | 2 | a5i 1557 | . . . . . 6 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥[𝑦 / 𝑥]𝜑) |
| 4 | 3 | imim2i 12 | . . . . 5 ⊢ (([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) |
| 5 | 4 | alimi 1469 | . . . 4 ⊢ (∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) |
| 6 | df-nf 1475 | . . . 4 ⊢ (Ⅎ𝑥[𝑦 / 𝑥]𝜑 ↔ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) | |
| 7 | 5, 6 | sylibr 134 | . . 3 ⊢ (∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
| 8 | 7 | orim2i 762 | . 2 ⊢ ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) → (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥[𝑦 / 𝑥]𝜑)) |
| 9 | 1, 8 | ax-mp 5 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 ∀wal 1362 Ⅎwnf 1474 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 |
| This theorem is referenced by: sbequi 1853 |
| Copyright terms: Public domain | W3C validator |