| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsb2or | GIF version | ||
| Description: Bound-variable hypothesis builder for substitution. Similar to hbsb2 1860 but in intuitionistic logic a disjunction is stronger than an implication. (Contributed by Jim Kingdon, 2-Feb-2018.) |
| Ref | Expression |
|---|---|
| nfsb2or | ⊢ (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb4or 1857 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | sb2 1791 | . . . . . . 7 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) | |
| 3 | 2 | a5i 1567 | . . . . . 6 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥[𝑦 / 𝑥]𝜑) |
| 4 | 3 | imim2i 12 | . . . . 5 ⊢ (([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) |
| 5 | 4 | alimi 1479 | . . . 4 ⊢ (∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) |
| 6 | df-nf 1485 | . . . 4 ⊢ (Ⅎ𝑥[𝑦 / 𝑥]𝜑 ↔ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) | |
| 7 | 5, 6 | sylibr 134 | . . 3 ⊢ (∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
| 8 | 7 | orim2i 763 | . 2 ⊢ ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) → (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥[𝑦 / 𝑥]𝜑)) |
| 9 | 1, 8 | ax-mp 5 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 ∀wal 1371 Ⅎwnf 1484 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: sbequi 1863 |
| Copyright terms: Public domain | W3C validator |