ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbi GIF version

Theorem abbi 2196
Description: Equivalent wff's correspond to equal class abstractions. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
abbi (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})

Proof of Theorem abbi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2077 . 2 ({𝑥𝜑} = {𝑥𝜓} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}))
2 nfsab1 2073 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
3 nfsab1 2073 . . . 4 𝑥 𝑦 ∈ {𝑥𝜓}
42, 3nfbi 1522 . . 3 𝑥(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓})
5 nfv 1462 . . 3 𝑦(𝜑𝜓)
6 df-clab 2070 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
7 sbequ12r 1697 . . . . 5 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑𝜑))
86, 7syl5bb 190 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝜑))
9 df-clab 2070 . . . . 5 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
10 sbequ12r 1697 . . . . 5 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜓𝜓))
119, 10syl5bb 190 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜓} ↔ 𝜓))
128, 11bibi12d 233 . . 3 (𝑦 = 𝑥 → ((𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}) ↔ (𝜑𝜓)))
134, 5, 12cbval 1679 . 2 (∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}) ↔ ∀𝑥(𝜑𝜓))
141, 13bitr2i 183 1 (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
Colors of variables: wff set class
Syntax hints:  wb 103  wal 1283   = wceq 1285  wcel 1434  [wsb 1687  {cab 2069
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076
This theorem is referenced by:  abbii  2198  abbid  2199  rabbi  2537  sbcbi2  2875  dfiota2  4935  iotabi  4943  uniabio  4944
  Copyright terms: Public domain W3C validator