| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > abbi | GIF version | ||
| Description: Equivalent wff's correspond to equal class abstractions. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| abbi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfcleq 2190 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) | |
| 2 | nfsab1 2186 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
| 3 | nfsab1 2186 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜓} | |
| 4 | 2, 3 | nfbi 1603 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓}) | 
| 5 | nfv 1542 | . . 3 ⊢ Ⅎ𝑦(𝜑 ↔ 𝜓) | |
| 6 | df-clab 2183 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 7 | sbequ12r 1786 | . . . . 5 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
| 8 | 6, 7 | bitrid 192 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑)) | 
| 9 | df-clab 2183 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 10 | sbequ12r 1786 | . . . . 5 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜓 ↔ 𝜓)) | |
| 11 | 9, 10 | bitrid 192 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ 𝜓)) | 
| 12 | 8, 11 | bibi12d 235 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ (𝜑 ↔ 𝜓))) | 
| 13 | 4, 5, 12 | cbval 1768 | . 2 ⊢ (∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ ∀𝑥(𝜑 ↔ 𝜓)) | 
| 14 | 1, 13 | bitr2i 185 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 ∀wal 1362 = wceq 1364 [wsb 1776 ∈ wcel 2167 {cab 2182 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 | 
| This theorem is referenced by: abbii 2312 abbid 2313 rabbi 2675 sbcbi2 3040 dfiota2 5220 iotabi 5228 uniabio 5229 | 
| Copyright terms: Public domain | W3C validator |