![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abbi | GIF version |
Description: Equivalent wff's correspond to equal class abstractions. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
abbi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2077 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) | |
2 | nfsab1 2073 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
3 | nfsab1 2073 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜓} | |
4 | 2, 3 | nfbi 1522 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓}) |
5 | nfv 1462 | . . 3 ⊢ Ⅎ𝑦(𝜑 ↔ 𝜓) | |
6 | df-clab 2070 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
7 | sbequ12r 1697 | . . . . 5 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
8 | 6, 7 | syl5bb 190 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑)) |
9 | df-clab 2070 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
10 | sbequ12r 1697 | . . . . 5 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜓 ↔ 𝜓)) | |
11 | 9, 10 | syl5bb 190 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ 𝜓)) |
12 | 8, 11 | bibi12d 233 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ (𝜑 ↔ 𝜓))) |
13 | 4, 5, 12 | cbval 1679 | . 2 ⊢ (∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ ∀𝑥(𝜑 ↔ 𝜓)) |
14 | 1, 13 | bitr2i 183 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ∀wal 1283 = wceq 1285 ∈ wcel 1434 [wsb 1687 {cab 2069 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 |
This theorem is referenced by: abbii 2198 abbid 2199 rabbi 2537 sbcbi2 2875 dfiota2 4935 iotabi 4943 uniabio 4944 |
Copyright terms: Public domain | W3C validator |