ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intmin4 GIF version

Theorem intmin4 3794
Description: Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006.)
Assertion
Ref Expression
intmin4 (𝐴 {𝑥𝜑} → {𝑥 ∣ (𝐴𝑥𝜑)} = {𝑥𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem intmin4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssintab 3783 . . . 4 (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
2 simpr 109 . . . . . . . 8 ((𝐴𝑥𝜑) → 𝜑)
3 ancr 319 . . . . . . . 8 ((𝜑𝐴𝑥) → (𝜑 → (𝐴𝑥𝜑)))
42, 3impbid2 142 . . . . . . 7 ((𝜑𝐴𝑥) → ((𝐴𝑥𝜑) ↔ 𝜑))
54imbi1d 230 . . . . . 6 ((𝜑𝐴𝑥) → (((𝐴𝑥𝜑) → 𝑦𝑥) ↔ (𝜑𝑦𝑥)))
65alimi 1431 . . . . 5 (∀𝑥(𝜑𝐴𝑥) → ∀𝑥(((𝐴𝑥𝜑) → 𝑦𝑥) ↔ (𝜑𝑦𝑥)))
7 albi 1444 . . . . 5 (∀𝑥(((𝐴𝑥𝜑) → 𝑦𝑥) ↔ (𝜑𝑦𝑥)) → (∀𝑥((𝐴𝑥𝜑) → 𝑦𝑥) ↔ ∀𝑥(𝜑𝑦𝑥)))
86, 7syl 14 . . . 4 (∀𝑥(𝜑𝐴𝑥) → (∀𝑥((𝐴𝑥𝜑) → 𝑦𝑥) ↔ ∀𝑥(𝜑𝑦𝑥)))
91, 8sylbi 120 . . 3 (𝐴 {𝑥𝜑} → (∀𝑥((𝐴𝑥𝜑) → 𝑦𝑥) ↔ ∀𝑥(𝜑𝑦𝑥)))
10 vex 2684 . . . 4 𝑦 ∈ V
1110elintab 3777 . . 3 (𝑦 {𝑥 ∣ (𝐴𝑥𝜑)} ↔ ∀𝑥((𝐴𝑥𝜑) → 𝑦𝑥))
1210elintab 3777 . . 3 (𝑦 {𝑥𝜑} ↔ ∀𝑥(𝜑𝑦𝑥))
139, 11, 123bitr4g 222 . 2 (𝐴 {𝑥𝜑} → (𝑦 {𝑥 ∣ (𝐴𝑥𝜑)} ↔ 𝑦 {𝑥𝜑}))
1413eqrdv 2135 1 (𝐴 {𝑥𝜑} → {𝑥 ∣ (𝐴𝑥𝜑)} = {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1329   = wceq 1331  wcel 1480  {cab 2123  wss 3066   cint 3766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-v 2683  df-in 3072  df-ss 3079  df-int 3767
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator