Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intmin4 | GIF version |
Description: Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006.) |
Ref | Expression |
---|---|
intmin4 | ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} = ∩ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintab 3841 | . . . 4 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ⊆ 𝑥)) | |
2 | simpr 109 | . . . . . . . 8 ⊢ ((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝜑) | |
3 | ancr 319 | . . . . . . . 8 ⊢ ((𝜑 → 𝐴 ⊆ 𝑥) → (𝜑 → (𝐴 ⊆ 𝑥 ∧ 𝜑))) | |
4 | 2, 3 | impbid2 142 | . . . . . . 7 ⊢ ((𝜑 → 𝐴 ⊆ 𝑥) → ((𝐴 ⊆ 𝑥 ∧ 𝜑) ↔ 𝜑)) |
5 | 4 | imbi1d 230 | . . . . . 6 ⊢ ((𝜑 → 𝐴 ⊆ 𝑥) → (((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝑦 ∈ 𝑥))) |
6 | 5 | alimi 1443 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝐴 ⊆ 𝑥) → ∀𝑥(((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝑦 ∈ 𝑥))) |
7 | albi 1456 | . . . . 5 ⊢ (∀𝑥(((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝑦 ∈ 𝑥)) → (∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥))) | |
8 | 6, 7 | syl 14 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝐴 ⊆ 𝑥) → (∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥))) |
9 | 1, 8 | sylbi 120 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → (∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥))) |
10 | vex 2729 | . . . 4 ⊢ 𝑦 ∈ V | |
11 | 10 | elintab 3835 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} ↔ ∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥)) |
12 | 10 | elintab 3835 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥)) |
13 | 9, 11, 12 | 3bitr4g 222 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → (𝑦 ∈ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} ↔ 𝑦 ∈ ∩ {𝑥 ∣ 𝜑})) |
14 | 13 | eqrdv 2163 | 1 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} = ∩ {𝑥 ∣ 𝜑}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 = wceq 1343 ∈ wcel 2136 {cab 2151 ⊆ wss 3116 ∩ cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-int 3825 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |