| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intmin4 | GIF version | ||
| Description: Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006.) |
| Ref | Expression |
|---|---|
| intmin4 | ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} = ∩ {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintab 3905 | . . . 4 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ⊆ 𝑥)) | |
| 2 | simpr 110 | . . . . . . . 8 ⊢ ((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝜑) | |
| 3 | ancr 321 | . . . . . . . 8 ⊢ ((𝜑 → 𝐴 ⊆ 𝑥) → (𝜑 → (𝐴 ⊆ 𝑥 ∧ 𝜑))) | |
| 4 | 2, 3 | impbid2 143 | . . . . . . 7 ⊢ ((𝜑 → 𝐴 ⊆ 𝑥) → ((𝐴 ⊆ 𝑥 ∧ 𝜑) ↔ 𝜑)) |
| 5 | 4 | imbi1d 231 | . . . . . 6 ⊢ ((𝜑 → 𝐴 ⊆ 𝑥) → (((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝑦 ∈ 𝑥))) |
| 6 | 5 | alimi 1479 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝐴 ⊆ 𝑥) → ∀𝑥(((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝑦 ∈ 𝑥))) |
| 7 | albi 1492 | . . . . 5 ⊢ (∀𝑥(((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝑦 ∈ 𝑥)) → (∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥))) | |
| 8 | 6, 7 | syl 14 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝐴 ⊆ 𝑥) → (∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥))) |
| 9 | 1, 8 | sylbi 121 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → (∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥))) |
| 10 | vex 2776 | . . . 4 ⊢ 𝑦 ∈ V | |
| 11 | 10 | elintab 3899 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} ↔ ∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥)) |
| 12 | 10 | elintab 3899 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥)) |
| 13 | 9, 11, 12 | 3bitr4g 223 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → (𝑦 ∈ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} ↔ 𝑦 ∈ ∩ {𝑥 ∣ 𝜑})) |
| 14 | 13 | eqrdv 2204 | 1 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} = ∩ {𝑥 ∣ 𝜑}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 = wceq 1373 ∈ wcel 2177 {cab 2192 ⊆ wss 3168 ∩ cint 3888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-in 3174 df-ss 3181 df-int 3889 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |