ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intmin4 GIF version

Theorem intmin4 3916
Description: Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006.)
Assertion
Ref Expression
intmin4 (𝐴 {𝑥𝜑} → {𝑥 ∣ (𝐴𝑥𝜑)} = {𝑥𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem intmin4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssintab 3905 . . . 4 (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
2 simpr 110 . . . . . . . 8 ((𝐴𝑥𝜑) → 𝜑)
3 ancr 321 . . . . . . . 8 ((𝜑𝐴𝑥) → (𝜑 → (𝐴𝑥𝜑)))
42, 3impbid2 143 . . . . . . 7 ((𝜑𝐴𝑥) → ((𝐴𝑥𝜑) ↔ 𝜑))
54imbi1d 231 . . . . . 6 ((𝜑𝐴𝑥) → (((𝐴𝑥𝜑) → 𝑦𝑥) ↔ (𝜑𝑦𝑥)))
65alimi 1479 . . . . 5 (∀𝑥(𝜑𝐴𝑥) → ∀𝑥(((𝐴𝑥𝜑) → 𝑦𝑥) ↔ (𝜑𝑦𝑥)))
7 albi 1492 . . . . 5 (∀𝑥(((𝐴𝑥𝜑) → 𝑦𝑥) ↔ (𝜑𝑦𝑥)) → (∀𝑥((𝐴𝑥𝜑) → 𝑦𝑥) ↔ ∀𝑥(𝜑𝑦𝑥)))
86, 7syl 14 . . . 4 (∀𝑥(𝜑𝐴𝑥) → (∀𝑥((𝐴𝑥𝜑) → 𝑦𝑥) ↔ ∀𝑥(𝜑𝑦𝑥)))
91, 8sylbi 121 . . 3 (𝐴 {𝑥𝜑} → (∀𝑥((𝐴𝑥𝜑) → 𝑦𝑥) ↔ ∀𝑥(𝜑𝑦𝑥)))
10 vex 2776 . . . 4 𝑦 ∈ V
1110elintab 3899 . . 3 (𝑦 {𝑥 ∣ (𝐴𝑥𝜑)} ↔ ∀𝑥((𝐴𝑥𝜑) → 𝑦𝑥))
1210elintab 3899 . . 3 (𝑦 {𝑥𝜑} ↔ ∀𝑥(𝜑𝑦𝑥))
139, 11, 123bitr4g 223 . 2 (𝐴 {𝑥𝜑} → (𝑦 {𝑥 ∣ (𝐴𝑥𝜑)} ↔ 𝑦 {𝑥𝜑}))
1413eqrdv 2204 1 (𝐴 {𝑥𝜑} → {𝑥 ∣ (𝐴𝑥𝜑)} = {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  wcel 2177  {cab 2192  wss 3168   cint 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-in 3174  df-ss 3181  df-int 3889
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator