![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intmin4 | GIF version |
Description: Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006.) |
Ref | Expression |
---|---|
intmin4 | ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} = ∩ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintab 3752 | . . . 4 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ⊆ 𝑥)) | |
2 | simpr 109 | . . . . . . . 8 ⊢ ((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝜑) | |
3 | ancr 317 | . . . . . . . 8 ⊢ ((𝜑 → 𝐴 ⊆ 𝑥) → (𝜑 → (𝐴 ⊆ 𝑥 ∧ 𝜑))) | |
4 | 2, 3 | impbid2 142 | . . . . . . 7 ⊢ ((𝜑 → 𝐴 ⊆ 𝑥) → ((𝐴 ⊆ 𝑥 ∧ 𝜑) ↔ 𝜑)) |
5 | 4 | imbi1d 230 | . . . . . 6 ⊢ ((𝜑 → 𝐴 ⊆ 𝑥) → (((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝑦 ∈ 𝑥))) |
6 | 5 | alimi 1412 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝐴 ⊆ 𝑥) → ∀𝑥(((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝑦 ∈ 𝑥))) |
7 | albi 1425 | . . . . 5 ⊢ (∀𝑥(((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝑦 ∈ 𝑥)) → (∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥))) | |
8 | 6, 7 | syl 14 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝐴 ⊆ 𝑥) → (∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥))) |
9 | 1, 8 | sylbi 120 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → (∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥))) |
10 | vex 2658 | . . . 4 ⊢ 𝑦 ∈ V | |
11 | 10 | elintab 3746 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} ↔ ∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥)) |
12 | 10 | elintab 3746 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥)) |
13 | 9, 11, 12 | 3bitr4g 222 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → (𝑦 ∈ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} ↔ 𝑦 ∈ ∩ {𝑥 ∣ 𝜑})) |
14 | 13 | eqrdv 2111 | 1 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} = ∩ {𝑥 ∣ 𝜑}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1310 = wceq 1312 ∈ wcel 1461 {cab 2099 ⊆ wss 3035 ∩ cint 3735 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-v 2657 df-in 3041 df-ss 3048 df-int 3736 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |