| Step | Hyp | Ref
 | Expression | 
| 1 |   | bdsepnft.1 | 
. . 3
⊢
BOUNDED 𝜑 | 
| 2 | 1 | bdsep2 15532 | 
. 2
⊢
∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) | 
| 3 |   | nfnf1 1558 | 
. . . 4
⊢
Ⅎ𝑏Ⅎ𝑏𝜑 | 
| 4 | 3 | nfal 1590 | 
. . 3
⊢
Ⅎ𝑏∀𝑥Ⅎ𝑏𝜑 | 
| 5 |   | nfa1 1555 | 
. . . 4
⊢
Ⅎ𝑥∀𝑥Ⅎ𝑏𝜑 | 
| 6 |   | nfvd 1543 | 
. . . . 5
⊢
(∀𝑥Ⅎ𝑏𝜑 → Ⅎ𝑏 𝑥 ∈ 𝑦) | 
| 7 |   | nfv 1542 | 
. . . . . . 7
⊢
Ⅎ𝑏 𝑥 ∈ 𝑎 | 
| 8 | 7 | a1i 9 | 
. . . . . 6
⊢
(∀𝑥Ⅎ𝑏𝜑 → Ⅎ𝑏 𝑥 ∈ 𝑎) | 
| 9 |   | sp 1525 | 
. . . . . 6
⊢
(∀𝑥Ⅎ𝑏𝜑 → Ⅎ𝑏𝜑) | 
| 10 | 8, 9 | nfand 1582 | 
. . . . 5
⊢
(∀𝑥Ⅎ𝑏𝜑 → Ⅎ𝑏(𝑥 ∈ 𝑎 ∧ 𝜑)) | 
| 11 | 6, 10 | nfbid 1602 | 
. . . 4
⊢
(∀𝑥Ⅎ𝑏𝜑 → Ⅎ𝑏(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑))) | 
| 12 | 5, 11 | nfald 1774 | 
. . 3
⊢
(∀𝑥Ⅎ𝑏𝜑 → Ⅎ𝑏∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑))) | 
| 13 |   | nfv 1542 | 
. . . . . 6
⊢
Ⅎ𝑥 𝑦 = 𝑏 | 
| 14 | 5, 13 | nfan 1579 | 
. . . . 5
⊢
Ⅎ𝑥(∀𝑥Ⅎ𝑏𝜑 ∧ 𝑦 = 𝑏) | 
| 15 |   | elequ2 2172 | 
. . . . . . 7
⊢ (𝑦 = 𝑏 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑏)) | 
| 16 | 15 | adantl 277 | 
. . . . . 6
⊢
((∀𝑥Ⅎ𝑏𝜑 ∧ 𝑦 = 𝑏) → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑏)) | 
| 17 | 16 | bibi1d 233 | 
. . . . 5
⊢
((∀𝑥Ⅎ𝑏𝜑 ∧ 𝑦 = 𝑏) → ((𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)))) | 
| 18 | 14, 17 | albid 1629 | 
. . . 4
⊢
((∀𝑥Ⅎ𝑏𝜑 ∧ 𝑦 = 𝑏) → (∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) ↔ ∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)))) | 
| 19 | 18 | ex 115 | 
. . 3
⊢
(∀𝑥Ⅎ𝑏𝜑 → (𝑦 = 𝑏 → (∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) ↔ ∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑))))) | 
| 20 | 4, 12, 19 | cbvexd 1942 | 
. 2
⊢
(∀𝑥Ⅎ𝑏𝜑 → (∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) ↔ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)))) | 
| 21 | 2, 20 | mpbii 148 | 
1
⊢
(∀𝑥Ⅎ𝑏𝜑 → ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑))) |