ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onunisuci GIF version

Theorem onunisuci 4283
Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
onunisuci suc 𝐴 = 𝐴

Proof of Theorem onunisuci
StepHypRef Expression
1 on.1 . . 3 𝐴 ∈ On
21ontrci 4278 . 2 Tr 𝐴
31elexi 2645 . . 3 𝐴 ∈ V
43unisuc 4264 . 2 (Tr 𝐴 suc 𝐴 = 𝐴)
52, 4mpbi 144 1 suc 𝐴 = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1296  wcel 1445   cuni 3675  Tr wtr 3958  Oncon0 4214  suc csuc 4216
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-sn 3472  df-pr 3473  df-uni 3676  df-tr 3959  df-iord 4217  df-on 4219  df-suc 4222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator