![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > onunisuci | GIF version |
Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onunisuci | ⊢ ∪ suc 𝐴 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . . 3 ⊢ 𝐴 ∈ On | |
2 | 1 | ontrci 4458 | . 2 ⊢ Tr 𝐴 |
3 | 1 | elexi 2772 | . . 3 ⊢ 𝐴 ∈ V |
4 | 3 | unisuc 4444 | . 2 ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
5 | 2, 4 | mpbi 145 | 1 ⊢ ∪ suc 𝐴 = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 ∪ cuni 3835 Tr wtr 4127 Oncon0 4394 suc csuc 4396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 df-suc 4402 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |