![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniex | GIF version |
Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 2766), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
Ref | Expression |
---|---|
uniex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
uniex | ⊢ ∪ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | unieq 3844 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
3 | 2 | eleq1d 2262 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
4 | uniex2 4467 | . . 3 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
5 | 4 | issetri 2769 | . 2 ⊢ ∪ 𝑥 ∈ V |
6 | 1, 3, 5 | vtocl 2814 | 1 ⊢ ∪ 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∪ cuni 3835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-uni 3836 |
This theorem is referenced by: vuniex 4469 uniexg 4470 unex 4472 uniuni 4482 iunpw 4511 fo1st 6210 fo2nd 6211 brtpos2 6304 tfrexlem 6387 ixpsnf1o 6790 xpcomco 6880 xpassen 6884 pnfnre 8061 pnfxr 8072 |
Copyright terms: Public domain | W3C validator |