ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniex GIF version

Theorem uniex 4473
Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 2769), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.)
Hypothesis
Ref Expression
uniex.1 𝐴 ∈ V
Assertion
Ref Expression
uniex 𝐴 ∈ V

Proof of Theorem uniex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniex.1 . 2 𝐴 ∈ V
2 unieq 3849 . . 3 (𝑥 = 𝐴 𝑥 = 𝐴)
32eleq1d 2265 . 2 (𝑥 = 𝐴 → ( 𝑥 ∈ V ↔ 𝐴 ∈ V))
4 uniex2 4472 . . 3 𝑦 𝑦 = 𝑥
54issetri 2772 . 2 𝑥 ∈ V
61, 3, 5vtocl 2818 1 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  Vcvv 2763   cuni 3840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-uni 3841
This theorem is referenced by:  vuniex  4474  uniexg  4475  unex  4477  uniuni  4487  iunpw  4516  fo1st  6224  fo2nd  6225  brtpos2  6318  tfrexlem  6401  ixpsnf1o  6804  xpcomco  6894  xpassen  6898  pnfnre  8085  pnfxr  8096  prdsvallem  12974  prdsval  12975
  Copyright terms: Public domain W3C validator