ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniex GIF version

Theorem uniex 4438
Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 2744), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.)
Hypothesis
Ref Expression
uniex.1 𝐴 ∈ V
Assertion
Ref Expression
uniex 𝐴 ∈ V

Proof of Theorem uniex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniex.1 . 2 𝐴 ∈ V
2 unieq 3819 . . 3 (𝑥 = 𝐴 𝑥 = 𝐴)
32eleq1d 2246 . 2 (𝑥 = 𝐴 → ( 𝑥 ∈ V ↔ 𝐴 ∈ V))
4 uniex2 4437 . . 3 𝑦 𝑦 = 𝑥
54issetri 2747 . 2 𝑥 ∈ V
61, 3, 5vtocl 2792 1 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  Vcvv 2738   cuni 3810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2740  df-uni 3811
This theorem is referenced by:  vuniex  4439  uniexg  4440  unex  4442  uniuni  4452  iunpw  4481  fo1st  6158  fo2nd  6159  brtpos2  6252  tfrexlem  6335  ixpsnf1o  6736  xpcomco  6826  xpassen  6830  pnfnre  7999  pnfxr  8010
  Copyright terms: Public domain W3C validator