ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniex GIF version

Theorem uniex 4485
Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 2778), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.)
Hypothesis
Ref Expression
uniex.1 𝐴 ∈ V
Assertion
Ref Expression
uniex 𝐴 ∈ V

Proof of Theorem uniex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniex.1 . 2 𝐴 ∈ V
2 unieq 3859 . . 3 (𝑥 = 𝐴 𝑥 = 𝐴)
32eleq1d 2274 . 2 (𝑥 = 𝐴 → ( 𝑥 ∈ V ↔ 𝐴 ∈ V))
4 uniex2 4484 . . 3 𝑦 𝑦 = 𝑥
54issetri 2781 . 2 𝑥 ∈ V
61, 3, 5vtocl 2827 1 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2176  Vcvv 2772   cuni 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-uni 3851
This theorem is referenced by:  vuniex  4486  uniexg  4487  unex  4489  uniuni  4499  iunpw  4528  fo1st  6245  fo2nd  6246  brtpos2  6339  tfrexlem  6422  ixpsnf1o  6825  xpcomco  6923  xpassen  6927  pnfnre  8116  pnfxr  8127  prdsvallem  13137  prdsval  13138
  Copyright terms: Public domain W3C validator