| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniex | GIF version | ||
| Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 2778), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
| Ref | Expression |
|---|---|
| uniex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| uniex | ⊢ ∪ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | unieq 3859 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 3 | 2 | eleq1d 2274 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
| 4 | uniex2 4484 | . . 3 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
| 5 | 4 | issetri 2781 | . 2 ⊢ ∪ 𝑥 ∈ V |
| 6 | 1, 3, 5 | vtocl 2827 | 1 ⊢ ∪ 𝐴 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2176 Vcvv 2772 ∪ cuni 3850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-uni 3851 |
| This theorem is referenced by: vuniex 4486 uniexg 4487 unex 4489 uniuni 4499 iunpw 4528 fo1st 6245 fo2nd 6246 brtpos2 6339 tfrexlem 6422 ixpsnf1o 6825 xpcomco 6923 xpassen 6927 pnfnre 8116 pnfxr 8127 prdsvallem 13137 prdsval 13138 |
| Copyright terms: Public domain | W3C validator |