ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax11a2 GIF version

Theorem ax11a2 1821
Description: Derive ax-11o 1823 from a hypothesis in the form of ax-11 1506. The hypothesis is even weaker than ax-11 1506, with 𝑧 both distinct from 𝑥 and not occurring in 𝜑. Thus the hypothesis provides an alternate axiom that can be used in place of ax11o 1822. (Contributed by NM, 2-Feb-2007.)
Hypothesis
Ref Expression
ax11a2.1 (𝑥 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
Assertion
Ref Expression
ax11a2 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem ax11a2
StepHypRef Expression
1 ax-17 1526 . . 3 (𝜑 → ∀𝑧𝜑)
2 ax11a2.1 . . 3 (𝑥 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
31, 2syl5 32 . 2 (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
43ax11v2 1820 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763
This theorem is referenced by:  ax11o  1822
  Copyright terms: Public domain W3C validator