ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax11a2 GIF version

Theorem ax11a2 1847
Description: Derive ax-11o 1849 from a hypothesis in the form of ax-11 1532. The hypothesis is even weaker than ax-11 1532, with 𝑧 both distinct from 𝑥 and not occurring in 𝜑. Thus the hypothesis provides an alternate axiom that can be used in place of ax11o 1848. (Contributed by NM, 2-Feb-2007.)
Hypothesis
Ref Expression
ax11a2.1 (𝑥 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
Assertion
Ref Expression
ax11a2 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem ax11a2
StepHypRef Expression
1 ax-17 1552 . . 3 (𝜑 → ∀𝑧𝜑)
2 ax11a2.1 . . 3 (𝑥 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
31, 2syl5 32 . 2 (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
43ax11v2 1846 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789
This theorem is referenced by:  ax11o  1848
  Copyright terms: Public domain W3C validator