ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax11b GIF version

Theorem ax11b 1826
Description: A bidirectional version of ax-11o 1823. (Contributed by NM, 30-Jun-2006.)
Assertion
Ref Expression
ax11b ((¬ ∀𝑥 𝑥 = 𝑦𝑥 = 𝑦) → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem ax11b
StepHypRef Expression
1 ax11o 1822 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
21imp 124 . 2 ((¬ ∀𝑥 𝑥 = 𝑦𝑥 = 𝑦) → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
3 ax-4 1510 . . . 4 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
43com12 30 . . 3 (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
54adantl 277 . 2 ((¬ ∀𝑥 𝑥 = 𝑦𝑥 = 𝑦) → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
62, 5impbid 129 1 ((¬ ∀𝑥 𝑥 = 𝑦𝑥 = 𝑦) → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator