Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsnss GIF version

Theorem bdsnss 15303
Description: Inclusion of a singleton of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdsnss.1 BOUNDED 𝐴
Assertion
Ref Expression
bdsnss BOUNDED {𝑥} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdsnss
StepHypRef Expression
1 bdsnss.1 . . 3 BOUNDED 𝐴
21bdeli 15276 . 2 BOUNDED 𝑥𝐴
3 vex 2763 . . 3 𝑥 ∈ V
43snss 3753 . 2 (𝑥𝐴 ↔ {𝑥} ⊆ 𝐴)
52, 4bd0 15254 1 BOUNDED {𝑥} ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2164  wss 3153  {csn 3618  BOUNDED wbd 15242  BOUNDED wbdc 15270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-bd0 15243
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-sn 3624  df-bdc 15271
This theorem is referenced by:  bdvsn  15304  bdeqsuc  15311
  Copyright terms: Public domain W3C validator