| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsnss | GIF version | ||
| Description: Inclusion of a singleton of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdsnss.1 | ⊢ BOUNDED 𝐴 |
| Ref | Expression |
|---|---|
| bdsnss | ⊢ BOUNDED {𝑥} ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdsnss.1 | . . 3 ⊢ BOUNDED 𝐴 | |
| 2 | 1 | bdeli 15856 | . 2 ⊢ BOUNDED 𝑥 ∈ 𝐴 |
| 3 | vex 2776 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | snss 3770 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ {𝑥} ⊆ 𝐴) |
| 5 | 2, 4 | bd0 15834 | 1 ⊢ BOUNDED {𝑥} ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ⊆ wss 3167 {csn 3634 BOUNDED wbd 15822 BOUNDED wbdc 15850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-bd0 15823 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3173 df-ss 3180 df-sn 3640 df-bdc 15851 |
| This theorem is referenced by: bdvsn 15884 bdeqsuc 15891 |
| Copyright terms: Public domain | W3C validator |