![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsnss | GIF version |
Description: Inclusion of a singleton of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdsnss.1 | ⊢ BOUNDED 𝐴 |
Ref | Expression |
---|---|
bdsnss | ⊢ BOUNDED {𝑥} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdsnss.1 | . . 3 ⊢ BOUNDED 𝐴 | |
2 | 1 | bdeli 11737 | . 2 ⊢ BOUNDED 𝑥 ∈ 𝐴 |
3 | vex 2622 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | snss 3566 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ {𝑥} ⊆ 𝐴) |
5 | 2, 4 | bd0 11715 | 1 ⊢ BOUNDED {𝑥} ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1438 ⊆ wss 2999 {csn 3446 BOUNDED wbd 11703 BOUNDED wbdc 11731 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-bd0 11704 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-in 3005 df-ss 3012 df-sn 3452 df-bdc 11732 |
This theorem is referenced by: bdvsn 11765 bdeqsuc 11772 |
Copyright terms: Public domain | W3C validator |