Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsnss GIF version

Theorem bdsnss 16260
Description: Inclusion of a singleton of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdsnss.1 BOUNDED 𝐴
Assertion
Ref Expression
bdsnss BOUNDED {𝑥} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdsnss
StepHypRef Expression
1 bdsnss.1 . . 3 BOUNDED 𝐴
21bdeli 16233 . 2 BOUNDED 𝑥𝐴
3 vex 2802 . . 3 𝑥 ∈ V
43snss 3803 . 2 (𝑥𝐴 ↔ {𝑥} ⊆ 𝐴)
52, 4bd0 16211 1 BOUNDED {𝑥} ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2200  wss 3197  {csn 3666  BOUNDED wbd 16199  BOUNDED wbdc 16227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bd0 16200
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-sn 3672  df-bdc 16228
This theorem is referenced by:  bdvsn  16261  bdeqsuc  16268
  Copyright terms: Public domain W3C validator