Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsnss GIF version

Theorem bdsnss 16146
Description: Inclusion of a singleton of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdsnss.1 BOUNDED 𝐴
Assertion
Ref Expression
bdsnss BOUNDED {𝑥} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdsnss
StepHypRef Expression
1 bdsnss.1 . . 3 BOUNDED 𝐴
21bdeli 16119 . 2 BOUNDED 𝑥𝐴
3 vex 2782 . . 3 𝑥 ∈ V
43snss 3782 . 2 (𝑥𝐴 ↔ {𝑥} ⊆ 𝐴)
52, 4bd0 16097 1 BOUNDED {𝑥} ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2180  wss 3177  {csn 3646  BOUNDED wbd 16085  BOUNDED wbdc 16113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191  ax-bd0 16086
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-in 3183  df-ss 3190  df-sn 3652  df-bdc 16114
This theorem is referenced by:  bdvsn  16147  bdeqsuc  16154
  Copyright terms: Public domain W3C validator