| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsnss | GIF version | ||
| Description: Inclusion of a singleton of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdsnss.1 | ⊢ BOUNDED 𝐴 |
| Ref | Expression |
|---|---|
| bdsnss | ⊢ BOUNDED {𝑥} ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdsnss.1 | . . 3 ⊢ BOUNDED 𝐴 | |
| 2 | 1 | bdeli 16119 | . 2 ⊢ BOUNDED 𝑥 ∈ 𝐴 |
| 3 | vex 2782 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | snss 3782 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ {𝑥} ⊆ 𝐴) |
| 5 | 2, 4 | bd0 16097 | 1 ⊢ BOUNDED {𝑥} ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 ⊆ wss 3177 {csn 3646 BOUNDED wbd 16085 BOUNDED wbdc 16113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-bd0 16086 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-in 3183 df-ss 3190 df-sn 3652 df-bdc 16114 |
| This theorem is referenced by: bdvsn 16147 bdeqsuc 16154 |
| Copyright terms: Public domain | W3C validator |