Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeqsuc GIF version

Theorem bdeqsuc 13763
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeqsuc BOUNDED 𝑥 = suc 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem bdeqsuc
StepHypRef Expression
1 bdcsuc 13762 . . . 4 BOUNDED suc 𝑦
21bdss 13746 . . 3 BOUNDED 𝑥 ⊆ suc 𝑦
3 bdcv 13730 . . . . . . 7 BOUNDED 𝑥
43bdss 13746 . . . . . 6 BOUNDED 𝑦𝑥
53bdsnss 13755 . . . . . 6 BOUNDED {𝑦} ⊆ 𝑥
64, 5ax-bdan 13697 . . . . 5 BOUNDED (𝑦𝑥 ∧ {𝑦} ⊆ 𝑥)
7 unss 3296 . . . . 5 ((𝑦𝑥 ∧ {𝑦} ⊆ 𝑥) ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥)
86, 7bd0 13706 . . . 4 BOUNDED (𝑦 ∪ {𝑦}) ⊆ 𝑥
9 df-suc 4349 . . . . 5 suc 𝑦 = (𝑦 ∪ {𝑦})
109sseq1i 3168 . . . 4 (suc 𝑦𝑥 ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥)
118, 10bd0r 13707 . . 3 BOUNDED suc 𝑦𝑥
122, 11ax-bdan 13697 . 2 BOUNDED (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦𝑥)
13 eqss 3157 . 2 (𝑥 = suc 𝑦 ↔ (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦𝑥))
1412, 13bd0r 13707 1 BOUNDED 𝑥 = suc 𝑦
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  cun 3114  wss 3116  {csn 3576  suc csuc 4343  BOUNDED wbd 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-bd0 13695  ax-bdan 13697  ax-bdor 13698  ax-bdal 13700  ax-bdeq 13702  ax-bdel 13703  ax-bdsb 13704
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-suc 4349  df-bdc 13723
This theorem is referenced by:  bj-bdsucel  13764  bj-nn0suc0  13832
  Copyright terms: Public domain W3C validator