| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdeqsuc | GIF version | ||
| Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| bdeqsuc | ⊢ BOUNDED 𝑥 = suc 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcsuc 15526 | . . . 4 ⊢ BOUNDED suc 𝑦 | |
| 2 | 1 | bdss 15510 | . . 3 ⊢ BOUNDED 𝑥 ⊆ suc 𝑦 |
| 3 | bdcv 15494 | . . . . . . 7 ⊢ BOUNDED 𝑥 | |
| 4 | 3 | bdss 15510 | . . . . . 6 ⊢ BOUNDED 𝑦 ⊆ 𝑥 |
| 5 | 3 | bdsnss 15519 | . . . . . 6 ⊢ BOUNDED {𝑦} ⊆ 𝑥 |
| 6 | 4, 5 | ax-bdan 15461 | . . . . 5 ⊢ BOUNDED (𝑦 ⊆ 𝑥 ∧ {𝑦} ⊆ 𝑥) |
| 7 | unss 3337 | . . . . 5 ⊢ ((𝑦 ⊆ 𝑥 ∧ {𝑦} ⊆ 𝑥) ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥) | |
| 8 | 6, 7 | bd0 15470 | . . . 4 ⊢ BOUNDED (𝑦 ∪ {𝑦}) ⊆ 𝑥 |
| 9 | df-suc 4406 | . . . . 5 ⊢ suc 𝑦 = (𝑦 ∪ {𝑦}) | |
| 10 | 9 | sseq1i 3209 | . . . 4 ⊢ (suc 𝑦 ⊆ 𝑥 ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥) |
| 11 | 8, 10 | bd0r 15471 | . . 3 ⊢ BOUNDED suc 𝑦 ⊆ 𝑥 |
| 12 | 2, 11 | ax-bdan 15461 | . 2 ⊢ BOUNDED (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ 𝑥) |
| 13 | eqss 3198 | . 2 ⊢ (𝑥 = suc 𝑦 ↔ (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ 𝑥)) | |
| 14 | 12, 13 | bd0r 15471 | 1 ⊢ BOUNDED 𝑥 = suc 𝑦 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∪ cun 3155 ⊆ wss 3157 {csn 3622 suc csuc 4400 BOUNDED wbd 15458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-bd0 15459 ax-bdan 15461 ax-bdor 15462 ax-bdal 15464 ax-bdeq 15466 ax-bdel 15467 ax-bdsb 15468 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-suc 4406 df-bdc 15487 |
| This theorem is referenced by: bj-bdsucel 15528 bj-nn0suc0 15596 |
| Copyright terms: Public domain | W3C validator |