| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdeqsuc | GIF version | ||
| Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| bdeqsuc | ⊢ BOUNDED 𝑥 = suc 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcsuc 15749 | . . . 4 ⊢ BOUNDED suc 𝑦 | |
| 2 | 1 | bdss 15733 | . . 3 ⊢ BOUNDED 𝑥 ⊆ suc 𝑦 |
| 3 | bdcv 15717 | . . . . . . 7 ⊢ BOUNDED 𝑥 | |
| 4 | 3 | bdss 15733 | . . . . . 6 ⊢ BOUNDED 𝑦 ⊆ 𝑥 |
| 5 | 3 | bdsnss 15742 | . . . . . 6 ⊢ BOUNDED {𝑦} ⊆ 𝑥 |
| 6 | 4, 5 | ax-bdan 15684 | . . . . 5 ⊢ BOUNDED (𝑦 ⊆ 𝑥 ∧ {𝑦} ⊆ 𝑥) |
| 7 | unss 3346 | . . . . 5 ⊢ ((𝑦 ⊆ 𝑥 ∧ {𝑦} ⊆ 𝑥) ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥) | |
| 8 | 6, 7 | bd0 15693 | . . . 4 ⊢ BOUNDED (𝑦 ∪ {𝑦}) ⊆ 𝑥 |
| 9 | df-suc 4417 | . . . . 5 ⊢ suc 𝑦 = (𝑦 ∪ {𝑦}) | |
| 10 | 9 | sseq1i 3218 | . . . 4 ⊢ (suc 𝑦 ⊆ 𝑥 ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥) |
| 11 | 8, 10 | bd0r 15694 | . . 3 ⊢ BOUNDED suc 𝑦 ⊆ 𝑥 |
| 12 | 2, 11 | ax-bdan 15684 | . 2 ⊢ BOUNDED (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ 𝑥) |
| 13 | eqss 3207 | . 2 ⊢ (𝑥 = suc 𝑦 ↔ (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ 𝑥)) | |
| 14 | 12, 13 | bd0r 15694 | 1 ⊢ BOUNDED 𝑥 = suc 𝑦 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1372 ∪ cun 3163 ⊆ wss 3165 {csn 3632 suc csuc 4411 BOUNDED wbd 15681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-bd0 15682 ax-bdan 15684 ax-bdor 15685 ax-bdal 15687 ax-bdeq 15689 ax-bdel 15690 ax-bdsb 15691 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-suc 4417 df-bdc 15710 |
| This theorem is referenced by: bj-bdsucel 15751 bj-nn0suc0 15819 |
| Copyright terms: Public domain | W3C validator |