Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeqsuc GIF version

Theorem bdeqsuc 15527
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeqsuc BOUNDED 𝑥 = suc 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem bdeqsuc
StepHypRef Expression
1 bdcsuc 15526 . . . 4 BOUNDED suc 𝑦
21bdss 15510 . . 3 BOUNDED 𝑥 ⊆ suc 𝑦
3 bdcv 15494 . . . . . . 7 BOUNDED 𝑥
43bdss 15510 . . . . . 6 BOUNDED 𝑦𝑥
53bdsnss 15519 . . . . . 6 BOUNDED {𝑦} ⊆ 𝑥
64, 5ax-bdan 15461 . . . . 5 BOUNDED (𝑦𝑥 ∧ {𝑦} ⊆ 𝑥)
7 unss 3337 . . . . 5 ((𝑦𝑥 ∧ {𝑦} ⊆ 𝑥) ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥)
86, 7bd0 15470 . . . 4 BOUNDED (𝑦 ∪ {𝑦}) ⊆ 𝑥
9 df-suc 4406 . . . . 5 suc 𝑦 = (𝑦 ∪ {𝑦})
109sseq1i 3209 . . . 4 (suc 𝑦𝑥 ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥)
118, 10bd0r 15471 . . 3 BOUNDED suc 𝑦𝑥
122, 11ax-bdan 15461 . 2 BOUNDED (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦𝑥)
13 eqss 3198 . 2 (𝑥 = suc 𝑦 ↔ (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦𝑥))
1412, 13bd0r 15471 1 BOUNDED 𝑥 = suc 𝑦
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  cun 3155  wss 3157  {csn 3622  suc csuc 4400  BOUNDED wbd 15458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-bd0 15459  ax-bdan 15461  ax-bdor 15462  ax-bdal 15464  ax-bdeq 15466  ax-bdel 15467  ax-bdsb 15468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-suc 4406  df-bdc 15487
This theorem is referenced by:  bj-bdsucel  15528  bj-nn0suc0  15596
  Copyright terms: Public domain W3C validator