![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdeqsuc | GIF version |
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.) |
Ref | Expression |
---|---|
bdeqsuc | ⊢ BOUNDED 𝑥 = suc 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcsuc 15442 | . . . 4 ⊢ BOUNDED suc 𝑦 | |
2 | 1 | bdss 15426 | . . 3 ⊢ BOUNDED 𝑥 ⊆ suc 𝑦 |
3 | bdcv 15410 | . . . . . . 7 ⊢ BOUNDED 𝑥 | |
4 | 3 | bdss 15426 | . . . . . 6 ⊢ BOUNDED 𝑦 ⊆ 𝑥 |
5 | 3 | bdsnss 15435 | . . . . . 6 ⊢ BOUNDED {𝑦} ⊆ 𝑥 |
6 | 4, 5 | ax-bdan 15377 | . . . . 5 ⊢ BOUNDED (𝑦 ⊆ 𝑥 ∧ {𝑦} ⊆ 𝑥) |
7 | unss 3334 | . . . . 5 ⊢ ((𝑦 ⊆ 𝑥 ∧ {𝑦} ⊆ 𝑥) ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥) | |
8 | 6, 7 | bd0 15386 | . . . 4 ⊢ BOUNDED (𝑦 ∪ {𝑦}) ⊆ 𝑥 |
9 | df-suc 4403 | . . . . 5 ⊢ suc 𝑦 = (𝑦 ∪ {𝑦}) | |
10 | 9 | sseq1i 3206 | . . . 4 ⊢ (suc 𝑦 ⊆ 𝑥 ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥) |
11 | 8, 10 | bd0r 15387 | . . 3 ⊢ BOUNDED suc 𝑦 ⊆ 𝑥 |
12 | 2, 11 | ax-bdan 15377 | . 2 ⊢ BOUNDED (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ 𝑥) |
13 | eqss 3195 | . 2 ⊢ (𝑥 = suc 𝑦 ↔ (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ 𝑥)) | |
14 | 12, 13 | bd0r 15387 | 1 ⊢ BOUNDED 𝑥 = suc 𝑦 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∪ cun 3152 ⊆ wss 3154 {csn 3619 suc csuc 4397 BOUNDED wbd 15374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-bd0 15375 ax-bdan 15377 ax-bdor 15378 ax-bdal 15380 ax-bdeq 15382 ax-bdel 15383 ax-bdsb 15384 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-suc 4403 df-bdc 15403 |
This theorem is referenced by: bj-bdsucel 15444 bj-nn0suc0 15512 |
Copyright terms: Public domain | W3C validator |