Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeqsuc GIF version

Theorem bdeqsuc 16016
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeqsuc BOUNDED 𝑥 = suc 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem bdeqsuc
StepHypRef Expression
1 bdcsuc 16015 . . . 4 BOUNDED suc 𝑦
21bdss 15999 . . 3 BOUNDED 𝑥 ⊆ suc 𝑦
3 bdcv 15983 . . . . . . 7 BOUNDED 𝑥
43bdss 15999 . . . . . 6 BOUNDED 𝑦𝑥
53bdsnss 16008 . . . . . 6 BOUNDED {𝑦} ⊆ 𝑥
64, 5ax-bdan 15950 . . . . 5 BOUNDED (𝑦𝑥 ∧ {𝑦} ⊆ 𝑥)
7 unss 3355 . . . . 5 ((𝑦𝑥 ∧ {𝑦} ⊆ 𝑥) ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥)
86, 7bd0 15959 . . . 4 BOUNDED (𝑦 ∪ {𝑦}) ⊆ 𝑥
9 df-suc 4436 . . . . 5 suc 𝑦 = (𝑦 ∪ {𝑦})
109sseq1i 3227 . . . 4 (suc 𝑦𝑥 ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥)
118, 10bd0r 15960 . . 3 BOUNDED suc 𝑦𝑥
122, 11ax-bdan 15950 . 2 BOUNDED (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦𝑥)
13 eqss 3216 . 2 (𝑥 = suc 𝑦 ↔ (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦𝑥))
1412, 13bd0r 15960 1 BOUNDED 𝑥 = suc 𝑦
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  cun 3172  wss 3174  {csn 3643  suc csuc 4430  BOUNDED wbd 15947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-bd0 15948  ax-bdan 15950  ax-bdor 15951  ax-bdal 15953  ax-bdeq 15955  ax-bdel 15956  ax-bdsb 15957
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-suc 4436  df-bdc 15976
This theorem is referenced by:  bj-bdsucel  16017  bj-nn0suc0  16085
  Copyright terms: Public domain W3C validator