Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeqsuc GIF version

Theorem bdeqsuc 16202
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeqsuc BOUNDED 𝑥 = suc 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem bdeqsuc
StepHypRef Expression
1 bdcsuc 16201 . . . 4 BOUNDED suc 𝑦
21bdss 16185 . . 3 BOUNDED 𝑥 ⊆ suc 𝑦
3 bdcv 16169 . . . . . . 7 BOUNDED 𝑥
43bdss 16185 . . . . . 6 BOUNDED 𝑦𝑥
53bdsnss 16194 . . . . . 6 BOUNDED {𝑦} ⊆ 𝑥
64, 5ax-bdan 16136 . . . . 5 BOUNDED (𝑦𝑥 ∧ {𝑦} ⊆ 𝑥)
7 unss 3378 . . . . 5 ((𝑦𝑥 ∧ {𝑦} ⊆ 𝑥) ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥)
86, 7bd0 16145 . . . 4 BOUNDED (𝑦 ∪ {𝑦}) ⊆ 𝑥
9 df-suc 4461 . . . . 5 suc 𝑦 = (𝑦 ∪ {𝑦})
109sseq1i 3250 . . . 4 (suc 𝑦𝑥 ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥)
118, 10bd0r 16146 . . 3 BOUNDED suc 𝑦𝑥
122, 11ax-bdan 16136 . 2 BOUNDED (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦𝑥)
13 eqss 3239 . 2 (𝑥 = suc 𝑦 ↔ (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦𝑥))
1412, 13bd0r 16146 1 BOUNDED 𝑥 = suc 𝑦
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  cun 3195  wss 3197  {csn 3666  suc csuc 4455  BOUNDED wbd 16133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bd0 16134  ax-bdan 16136  ax-bdor 16137  ax-bdal 16139  ax-bdeq 16141  ax-bdel 16142  ax-bdsb 16143
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-suc 4461  df-bdc 16162
This theorem is referenced by:  bj-bdsucel  16203  bj-nn0suc0  16271
  Copyright terms: Public domain W3C validator