Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeqsuc GIF version

Theorem bdeqsuc 13416
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeqsuc BOUNDED 𝑥 = suc 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem bdeqsuc
StepHypRef Expression
1 bdcsuc 13415 . . . 4 BOUNDED suc 𝑦
21bdss 13399 . . 3 BOUNDED 𝑥 ⊆ suc 𝑦
3 bdcv 13383 . . . . . . 7 BOUNDED 𝑥
43bdss 13399 . . . . . 6 BOUNDED 𝑦𝑥
53bdsnss 13408 . . . . . 6 BOUNDED {𝑦} ⊆ 𝑥
64, 5ax-bdan 13350 . . . . 5 BOUNDED (𝑦𝑥 ∧ {𝑦} ⊆ 𝑥)
7 unss 3281 . . . . 5 ((𝑦𝑥 ∧ {𝑦} ⊆ 𝑥) ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥)
86, 7bd0 13359 . . . 4 BOUNDED (𝑦 ∪ {𝑦}) ⊆ 𝑥
9 df-suc 4330 . . . . 5 suc 𝑦 = (𝑦 ∪ {𝑦})
109sseq1i 3154 . . . 4 (suc 𝑦𝑥 ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥)
118, 10bd0r 13360 . . 3 BOUNDED suc 𝑦𝑥
122, 11ax-bdan 13350 . 2 BOUNDED (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦𝑥)
13 eqss 3143 . 2 (𝑥 = suc 𝑦 ↔ (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦𝑥))
1412, 13bd0r 13360 1 BOUNDED 𝑥 = suc 𝑦
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1335  cun 3100  wss 3102  {csn 3560  suc csuc 4324  BOUNDED wbd 13347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139  ax-bd0 13348  ax-bdan 13350  ax-bdor 13351  ax-bdal 13353  ax-bdeq 13355  ax-bdel 13356  ax-bdsb 13357
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-suc 4330  df-bdc 13376
This theorem is referenced by:  bj-bdsucel  13417  bj-nn0suc0  13485
  Copyright terms: Public domain W3C validator