Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdeqsuc | GIF version |
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.) |
Ref | Expression |
---|---|
bdeqsuc | ⊢ BOUNDED 𝑥 = suc 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcsuc 13915 | . . . 4 ⊢ BOUNDED suc 𝑦 | |
2 | 1 | bdss 13899 | . . 3 ⊢ BOUNDED 𝑥 ⊆ suc 𝑦 |
3 | bdcv 13883 | . . . . . . 7 ⊢ BOUNDED 𝑥 | |
4 | 3 | bdss 13899 | . . . . . 6 ⊢ BOUNDED 𝑦 ⊆ 𝑥 |
5 | 3 | bdsnss 13908 | . . . . . 6 ⊢ BOUNDED {𝑦} ⊆ 𝑥 |
6 | 4, 5 | ax-bdan 13850 | . . . . 5 ⊢ BOUNDED (𝑦 ⊆ 𝑥 ∧ {𝑦} ⊆ 𝑥) |
7 | unss 3301 | . . . . 5 ⊢ ((𝑦 ⊆ 𝑥 ∧ {𝑦} ⊆ 𝑥) ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥) | |
8 | 6, 7 | bd0 13859 | . . . 4 ⊢ BOUNDED (𝑦 ∪ {𝑦}) ⊆ 𝑥 |
9 | df-suc 4356 | . . . . 5 ⊢ suc 𝑦 = (𝑦 ∪ {𝑦}) | |
10 | 9 | sseq1i 3173 | . . . 4 ⊢ (suc 𝑦 ⊆ 𝑥 ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥) |
11 | 8, 10 | bd0r 13860 | . . 3 ⊢ BOUNDED suc 𝑦 ⊆ 𝑥 |
12 | 2, 11 | ax-bdan 13850 | . 2 ⊢ BOUNDED (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ 𝑥) |
13 | eqss 3162 | . 2 ⊢ (𝑥 = suc 𝑦 ↔ (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ 𝑥)) | |
14 | 12, 13 | bd0r 13860 | 1 ⊢ BOUNDED 𝑥 = suc 𝑦 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∪ cun 3119 ⊆ wss 3121 {csn 3583 suc csuc 4350 BOUNDED wbd 13847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-bd0 13848 ax-bdan 13850 ax-bdor 13851 ax-bdal 13853 ax-bdeq 13855 ax-bdel 13856 ax-bdsb 13857 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-suc 4356 df-bdc 13876 |
This theorem is referenced by: bj-bdsucel 13917 bj-nn0suc0 13985 |
Copyright terms: Public domain | W3C validator |