Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdeqsuc | GIF version |
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.) |
Ref | Expression |
---|---|
bdeqsuc | ⊢ BOUNDED 𝑥 = suc 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcsuc 13762 | . . . 4 ⊢ BOUNDED suc 𝑦 | |
2 | 1 | bdss 13746 | . . 3 ⊢ BOUNDED 𝑥 ⊆ suc 𝑦 |
3 | bdcv 13730 | . . . . . . 7 ⊢ BOUNDED 𝑥 | |
4 | 3 | bdss 13746 | . . . . . 6 ⊢ BOUNDED 𝑦 ⊆ 𝑥 |
5 | 3 | bdsnss 13755 | . . . . . 6 ⊢ BOUNDED {𝑦} ⊆ 𝑥 |
6 | 4, 5 | ax-bdan 13697 | . . . . 5 ⊢ BOUNDED (𝑦 ⊆ 𝑥 ∧ {𝑦} ⊆ 𝑥) |
7 | unss 3296 | . . . . 5 ⊢ ((𝑦 ⊆ 𝑥 ∧ {𝑦} ⊆ 𝑥) ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥) | |
8 | 6, 7 | bd0 13706 | . . . 4 ⊢ BOUNDED (𝑦 ∪ {𝑦}) ⊆ 𝑥 |
9 | df-suc 4349 | . . . . 5 ⊢ suc 𝑦 = (𝑦 ∪ {𝑦}) | |
10 | 9 | sseq1i 3168 | . . . 4 ⊢ (suc 𝑦 ⊆ 𝑥 ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥) |
11 | 8, 10 | bd0r 13707 | . . 3 ⊢ BOUNDED suc 𝑦 ⊆ 𝑥 |
12 | 2, 11 | ax-bdan 13697 | . 2 ⊢ BOUNDED (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ 𝑥) |
13 | eqss 3157 | . 2 ⊢ (𝑥 = suc 𝑦 ↔ (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ 𝑥)) | |
14 | 12, 13 | bd0r 13707 | 1 ⊢ BOUNDED 𝑥 = suc 𝑦 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∪ cun 3114 ⊆ wss 3116 {csn 3576 suc csuc 4343 BOUNDED wbd 13694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-bd0 13695 ax-bdan 13697 ax-bdor 13698 ax-bdal 13700 ax-bdeq 13702 ax-bdel 13703 ax-bdsb 13704 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-suc 4349 df-bdc 13723 |
This theorem is referenced by: bj-bdsucel 13764 bj-nn0suc0 13832 |
Copyright terms: Public domain | W3C validator |