| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdeqsuc | GIF version | ||
| Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| bdeqsuc | ⊢ BOUNDED 𝑥 = suc 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcsuc 16201 | . . . 4 ⊢ BOUNDED suc 𝑦 | |
| 2 | 1 | bdss 16185 | . . 3 ⊢ BOUNDED 𝑥 ⊆ suc 𝑦 |
| 3 | bdcv 16169 | . . . . . . 7 ⊢ BOUNDED 𝑥 | |
| 4 | 3 | bdss 16185 | . . . . . 6 ⊢ BOUNDED 𝑦 ⊆ 𝑥 |
| 5 | 3 | bdsnss 16194 | . . . . . 6 ⊢ BOUNDED {𝑦} ⊆ 𝑥 |
| 6 | 4, 5 | ax-bdan 16136 | . . . . 5 ⊢ BOUNDED (𝑦 ⊆ 𝑥 ∧ {𝑦} ⊆ 𝑥) |
| 7 | unss 3378 | . . . . 5 ⊢ ((𝑦 ⊆ 𝑥 ∧ {𝑦} ⊆ 𝑥) ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥) | |
| 8 | 6, 7 | bd0 16145 | . . . 4 ⊢ BOUNDED (𝑦 ∪ {𝑦}) ⊆ 𝑥 |
| 9 | df-suc 4461 | . . . . 5 ⊢ suc 𝑦 = (𝑦 ∪ {𝑦}) | |
| 10 | 9 | sseq1i 3250 | . . . 4 ⊢ (suc 𝑦 ⊆ 𝑥 ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥) |
| 11 | 8, 10 | bd0r 16146 | . . 3 ⊢ BOUNDED suc 𝑦 ⊆ 𝑥 |
| 12 | 2, 11 | ax-bdan 16136 | . 2 ⊢ BOUNDED (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ 𝑥) |
| 13 | eqss 3239 | . 2 ⊢ (𝑥 = suc 𝑦 ↔ (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ 𝑥)) | |
| 14 | 12, 13 | bd0r 16146 | 1 ⊢ BOUNDED 𝑥 = suc 𝑦 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∪ cun 3195 ⊆ wss 3197 {csn 3666 suc csuc 4455 BOUNDED wbd 16133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-bd0 16134 ax-bdan 16136 ax-bdor 16137 ax-bdal 16139 ax-bdeq 16141 ax-bdel 16142 ax-bdsb 16143 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-suc 4461 df-bdc 16162 |
| This theorem is referenced by: bj-bdsucel 16203 bj-nn0suc0 16271 |
| Copyright terms: Public domain | W3C validator |