Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeqsuc GIF version

Theorem bdeqsuc 13916
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeqsuc BOUNDED 𝑥 = suc 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem bdeqsuc
StepHypRef Expression
1 bdcsuc 13915 . . . 4 BOUNDED suc 𝑦
21bdss 13899 . . 3 BOUNDED 𝑥 ⊆ suc 𝑦
3 bdcv 13883 . . . . . . 7 BOUNDED 𝑥
43bdss 13899 . . . . . 6 BOUNDED 𝑦𝑥
53bdsnss 13908 . . . . . 6 BOUNDED {𝑦} ⊆ 𝑥
64, 5ax-bdan 13850 . . . . 5 BOUNDED (𝑦𝑥 ∧ {𝑦} ⊆ 𝑥)
7 unss 3301 . . . . 5 ((𝑦𝑥 ∧ {𝑦} ⊆ 𝑥) ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥)
86, 7bd0 13859 . . . 4 BOUNDED (𝑦 ∪ {𝑦}) ⊆ 𝑥
9 df-suc 4356 . . . . 5 suc 𝑦 = (𝑦 ∪ {𝑦})
109sseq1i 3173 . . . 4 (suc 𝑦𝑥 ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥)
118, 10bd0r 13860 . . 3 BOUNDED suc 𝑦𝑥
122, 11ax-bdan 13850 . 2 BOUNDED (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦𝑥)
13 eqss 3162 . 2 (𝑥 = suc 𝑦 ↔ (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦𝑥))
1412, 13bd0r 13860 1 BOUNDED 𝑥 = suc 𝑦
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  cun 3119  wss 3121  {csn 3583  suc csuc 4350  BOUNDED wbd 13847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-bd0 13848  ax-bdan 13850  ax-bdor 13851  ax-bdal 13853  ax-bdeq 13855  ax-bdel 13856  ax-bdsb 13857
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-suc 4356  df-bdc 13876
This theorem is referenced by:  bj-bdsucel  13917  bj-nn0suc0  13985
  Copyright terms: Public domain W3C validator