Step | Hyp | Ref
| Expression |
1 | | dm0 4823 |
. . . . . . . . . 10
⊢ dom
∅ = ∅ |
2 | 1 | biantrur 301 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 ↔ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴)) |
3 | | vex 2733 |
. . . . . . . . . . . . . . . 16
⊢ 𝑚 ∈ V |
4 | | nsuceq0g 4401 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ V → suc 𝑚 ≠ ∅) |
5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ suc 𝑚 ≠ ∅ |
6 | 5 | nesymi 2386 |
. . . . . . . . . . . . . 14
⊢ ¬
∅ = suc 𝑚 |
7 | 1 | eqeq1i 2178 |
. . . . . . . . . . . . . 14
⊢ (dom
∅ = suc 𝑚 ↔
∅ = suc 𝑚) |
8 | 6, 7 | mtbir 666 |
. . . . . . . . . . . . 13
⊢ ¬
dom ∅ = suc 𝑚 |
9 | 8 | intnanr 925 |
. . . . . . . . . . . 12
⊢ ¬
(dom ∅ = suc 𝑚 ∧
𝑥 ∈ (𝐹‘(∅‘𝑚))) |
10 | 9 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ω → ¬
(dom ∅ = suc 𝑚 ∧
𝑥 ∈ (𝐹‘(∅‘𝑚)))) |
11 | 10 | nrex 2562 |
. . . . . . . . . 10
⊢ ¬
∃𝑚 ∈ ω
(dom ∅ = suc 𝑚 ∧
𝑥 ∈ (𝐹‘(∅‘𝑚))) |
12 | 11 | biorfi 741 |
. . . . . . . . 9
⊢ ((dom
∅ = ∅ ∧ 𝑥
∈ 𝐴) ↔ ((dom
∅ = ∅ ∧ 𝑥
∈ 𝐴) ∨ ∃𝑚 ∈ ω (dom ∅ =
suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))))) |
13 | | orcom 723 |
. . . . . . . . 9
⊢ (((dom
∅ = ∅ ∧ 𝑥
∈ 𝐴) ∨ ∃𝑚 ∈ ω (dom ∅ =
suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚)))) ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))) |
14 | 2, 12, 13 | 3bitri 205 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))) |
15 | 14 | abbii 2286 |
. . . . . . 7
⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))} |
16 | | abid2 2291 |
. . . . . . 7
⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
17 | 15, 16 | eqtr3i 2193 |
. . . . . 6
⊢ {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ =
suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))} = 𝐴 |
18 | | elex 2741 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
19 | 17, 18 | eqeltrid 2257 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) |
20 | | 0ex 4114 |
. . . . . . 7
⊢ ∅
∈ V |
21 | | dmeq 4809 |
. . . . . . . . . . . . 13
⊢ (𝑔 = ∅ → dom 𝑔 = dom ∅) |
22 | 21 | eqeq1d 2179 |
. . . . . . . . . . . 12
⊢ (𝑔 = ∅ → (dom 𝑔 = suc 𝑚 ↔ dom ∅ = suc 𝑚)) |
23 | | fveq1 5493 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = ∅ → (𝑔‘𝑚) = (∅‘𝑚)) |
24 | 23 | fveq2d 5498 |
. . . . . . . . . . . . 13
⊢ (𝑔 = ∅ → (𝐹‘(𝑔‘𝑚)) = (𝐹‘(∅‘𝑚))) |
25 | 24 | eleq2d 2240 |
. . . . . . . . . . . 12
⊢ (𝑔 = ∅ → (𝑥 ∈ (𝐹‘(𝑔‘𝑚)) ↔ 𝑥 ∈ (𝐹‘(∅‘𝑚)))) |
26 | 22, 25 | anbi12d 470 |
. . . . . . . . . . 11
⊢ (𝑔 = ∅ → ((dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ↔ (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))))) |
27 | 26 | rexbidv 2471 |
. . . . . . . . . 10
⊢ (𝑔 = ∅ → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ↔ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))))) |
28 | 21 | eqeq1d 2179 |
. . . . . . . . . . 11
⊢ (𝑔 = ∅ → (dom 𝑔 = ∅ ↔ dom ∅ =
∅)) |
29 | 28 | anbi1d 462 |
. . . . . . . . . 10
⊢ (𝑔 = ∅ → ((dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴) ↔ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))) |
30 | 27, 29 | orbi12d 788 |
. . . . . . . . 9
⊢ (𝑔 = ∅ → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴)) ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴)))) |
31 | 30 | abbidv 2288 |
. . . . . . . 8
⊢ (𝑔 = ∅ → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))}) |
32 | | eqid 2170 |
. . . . . . . 8
⊢ (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
33 | 31, 32 | fvmptg 5570 |
. . . . . . 7
⊢ ((∅
∈ V ∧ {𝑥 ∣
(∃𝑚 ∈ ω
(dom ∅ = suc 𝑚 ∧
𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))}) |
34 | 20, 33 | mpan 422 |
. . . . . 6
⊢ ({𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ =
suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))}) |
35 | 34, 17 | eqtrdi 2219 |
. . . . 5
⊢ ({𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ =
suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) = 𝐴) |
36 | 19, 35 | syl 14 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) = 𝐴) |
37 | 36, 18 | eqeltrd 2247 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) ∈
V) |
38 | | df-frec 6368 |
. . . . . 6
⊢
frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ↾ ω) |
39 | 38 | fveq1i 5495 |
. . . . 5
⊢
(frec(𝐹, 𝐴)‘∅) = ((recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ↾
ω)‘∅) |
40 | | peano1 4576 |
. . . . . 6
⊢ ∅
∈ ω |
41 | | fvres 5518 |
. . . . . 6
⊢ (∅
∈ ω → ((recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ↾ ω)‘∅) =
(recs((𝑔 ∈ V ↦
{𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}))‘∅)) |
42 | 40, 41 | ax-mp 5 |
. . . . 5
⊢
((recs((𝑔 ∈ V
↦ {𝑥 ∣
(∃𝑚 ∈ ω
(dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ↾ ω)‘∅) =
(recs((𝑔 ∈ V ↦
{𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}))‘∅) |
43 | 39, 42 | eqtri 2191 |
. . . 4
⊢
(frec(𝐹, 𝐴)‘∅) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}))‘∅) |
44 | | eqid 2170 |
. . . . 5
⊢
recs((𝑔 ∈ V
↦ {𝑥 ∣
(∃𝑚 ∈ ω
(dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) |
45 | 44 | tfr0 6300 |
. . . 4
⊢ (((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) ∈ V →
(recs((𝑔 ∈ V ↦
{𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}))‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅)) |
46 | 43, 45 | eqtrid 2215 |
. . 3
⊢ (((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) ∈ V →
(frec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅)) |
47 | 37, 46 | syl 14 |
. 2
⊢ (𝐴 ∈ 𝑉 → (frec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅)) |
48 | 47, 36 | eqtrd 2203 |
1
⊢ (𝐴 ∈ 𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴) |