ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec0g GIF version

Theorem frec0g 6376
Description: The initial value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 7-May-2020.)
Assertion
Ref Expression
frec0g (𝐴𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴)

Proof of Theorem frec0g
Dummy variables 𝑔 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dm0 4825 . . . . . . . . . 10 dom ∅ = ∅
21biantrur 301 . . . . . . . . 9 (𝑥𝐴 ↔ (dom ∅ = ∅ ∧ 𝑥𝐴))
3 vex 2733 . . . . . . . . . . . . . . . 16 𝑚 ∈ V
4 nsuceq0g 4403 . . . . . . . . . . . . . . . 16 (𝑚 ∈ V → suc 𝑚 ≠ ∅)
53, 4ax-mp 5 . . . . . . . . . . . . . . 15 suc 𝑚 ≠ ∅
65nesymi 2386 . . . . . . . . . . . . . 14 ¬ ∅ = suc 𝑚
71eqeq1i 2178 . . . . . . . . . . . . . 14 (dom ∅ = suc 𝑚 ↔ ∅ = suc 𝑚)
86, 7mtbir 666 . . . . . . . . . . . . 13 ¬ dom ∅ = suc 𝑚
98intnanr 925 . . . . . . . . . . . 12 ¬ (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))
109a1i 9 . . . . . . . . . . 11 (𝑚 ∈ ω → ¬ (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))))
1110nrex 2562 . . . . . . . . . 10 ¬ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))
1211biorfi 741 . . . . . . . . 9 ((dom ∅ = ∅ ∧ 𝑥𝐴) ↔ ((dom ∅ = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))))
13 orcom 723 . . . . . . . . 9 (((dom ∅ = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))) ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴)))
142, 12, 133bitri 205 . . . . . . . 8 (𝑥𝐴 ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴)))
1514abbii 2286 . . . . . . 7 {𝑥𝑥𝐴} = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))}
16 abid2 2291 . . . . . . 7 {𝑥𝑥𝐴} = 𝐴
1715, 16eqtr3i 2193 . . . . . 6 {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} = 𝐴
18 elex 2741 . . . . . 6 (𝐴𝑉𝐴 ∈ V)
1917, 18eqeltrid 2257 . . . . 5 (𝐴𝑉 → {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} ∈ V)
20 0ex 4116 . . . . . . 7 ∅ ∈ V
21 dmeq 4811 . . . . . . . . . . . . 13 (𝑔 = ∅ → dom 𝑔 = dom ∅)
2221eqeq1d 2179 . . . . . . . . . . . 12 (𝑔 = ∅ → (dom 𝑔 = suc 𝑚 ↔ dom ∅ = suc 𝑚))
23 fveq1 5495 . . . . . . . . . . . . . 14 (𝑔 = ∅ → (𝑔𝑚) = (∅‘𝑚))
2423fveq2d 5500 . . . . . . . . . . . . 13 (𝑔 = ∅ → (𝐹‘(𝑔𝑚)) = (𝐹‘(∅‘𝑚)))
2524eleq2d 2240 . . . . . . . . . . . 12 (𝑔 = ∅ → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘(∅‘𝑚))))
2622, 25anbi12d 470 . . . . . . . . . . 11 (𝑔 = ∅ → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))))
2726rexbidv 2471 . . . . . . . . . 10 (𝑔 = ∅ → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))))
2821eqeq1d 2179 . . . . . . . . . . 11 (𝑔 = ∅ → (dom 𝑔 = ∅ ↔ dom ∅ = ∅))
2928anbi1d 462 . . . . . . . . . 10 (𝑔 = ∅ → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom ∅ = ∅ ∧ 𝑥𝐴)))
3027, 29orbi12d 788 . . . . . . . . 9 (𝑔 = ∅ → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))))
3130abbidv 2288 . . . . . . . 8 (𝑔 = ∅ → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))})
32 eqid 2170 . . . . . . . 8 (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
3331, 32fvmptg 5572 . . . . . . 7 ((∅ ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} ∈ V) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))})
3420, 33mpan 422 . . . . . 6 ({𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} ∈ V → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))})
3534, 17eqtrdi 2219 . . . . 5 ({𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} ∈ V → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) = 𝐴)
3619, 35syl 14 . . . 4 (𝐴𝑉 → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) = 𝐴)
3736, 18eqeltrd 2247 . . 3 (𝐴𝑉 → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) ∈ V)
38 df-frec 6370 . . . . . 6 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
3938fveq1i 5497 . . . . 5 (frec(𝐹, 𝐴)‘∅) = ((recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)‘∅)
40 peano1 4578 . . . . . 6 ∅ ∈ ω
41 fvres 5520 . . . . . 6 (∅ ∈ ω → ((recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)‘∅) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))‘∅))
4240, 41ax-mp 5 . . . . 5 ((recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)‘∅) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))‘∅)
4339, 42eqtri 2191 . . . 4 (frec(𝐹, 𝐴)‘∅) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))‘∅)
44 eqid 2170 . . . . 5 recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
4544tfr0 6302 . . . 4 (((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) ∈ V → (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅))
4643, 45eqtrid 2215 . . 3 (((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) ∈ V → (frec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅))
4737, 46syl 14 . 2 (𝐴𝑉 → (frec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅))
4847, 36eqtrd 2203 1 (𝐴𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703   = wceq 1348  wcel 2141  {cab 2156  wne 2340  wrex 2449  Vcvv 2730  c0 3414  cmpt 4050  suc csuc 4350  ωcom 4574  dom cdm 4611  cres 4613  cfv 5198  recscrecs 6283  freccfrec 6369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-recs 6284  df-frec 6370
This theorem is referenced by:  frecrdg  6387  frec2uz0d  10355  frec2uzrdg  10365  frecuzrdg0  10369  frecuzrdgg  10372  frecuzrdg0t  10378  seq3val  10414  seqvalcd  10415
  Copyright terms: Public domain W3C validator