ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec0g GIF version

Theorem frec0g 6294
Description: The initial value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 7-May-2020.)
Assertion
Ref Expression
frec0g (𝐴𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴)

Proof of Theorem frec0g
Dummy variables 𝑔 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dm0 4753 . . . . . . . . . 10 dom ∅ = ∅
21biantrur 301 . . . . . . . . 9 (𝑥𝐴 ↔ (dom ∅ = ∅ ∧ 𝑥𝐴))
3 vex 2689 . . . . . . . . . . . . . . . 16 𝑚 ∈ V
4 nsuceq0g 4340 . . . . . . . . . . . . . . . 16 (𝑚 ∈ V → suc 𝑚 ≠ ∅)
53, 4ax-mp 5 . . . . . . . . . . . . . . 15 suc 𝑚 ≠ ∅
65nesymi 2354 . . . . . . . . . . . . . 14 ¬ ∅ = suc 𝑚
71eqeq1i 2147 . . . . . . . . . . . . . 14 (dom ∅ = suc 𝑚 ↔ ∅ = suc 𝑚)
86, 7mtbir 660 . . . . . . . . . . . . 13 ¬ dom ∅ = suc 𝑚
98intnanr 915 . . . . . . . . . . . 12 ¬ (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))
109a1i 9 . . . . . . . . . . 11 (𝑚 ∈ ω → ¬ (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))))
1110nrex 2524 . . . . . . . . . 10 ¬ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))
1211biorfi 735 . . . . . . . . 9 ((dom ∅ = ∅ ∧ 𝑥𝐴) ↔ ((dom ∅ = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))))
13 orcom 717 . . . . . . . . 9 (((dom ∅ = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))) ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴)))
142, 12, 133bitri 205 . . . . . . . 8 (𝑥𝐴 ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴)))
1514abbii 2255 . . . . . . 7 {𝑥𝑥𝐴} = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))}
16 abid2 2260 . . . . . . 7 {𝑥𝑥𝐴} = 𝐴
1715, 16eqtr3i 2162 . . . . . 6 {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} = 𝐴
18 elex 2697 . . . . . 6 (𝐴𝑉𝐴 ∈ V)
1917, 18eqeltrid 2226 . . . . 5 (𝐴𝑉 → {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} ∈ V)
20 0ex 4055 . . . . . . 7 ∅ ∈ V
21 dmeq 4739 . . . . . . . . . . . . 13 (𝑔 = ∅ → dom 𝑔 = dom ∅)
2221eqeq1d 2148 . . . . . . . . . . . 12 (𝑔 = ∅ → (dom 𝑔 = suc 𝑚 ↔ dom ∅ = suc 𝑚))
23 fveq1 5420 . . . . . . . . . . . . . 14 (𝑔 = ∅ → (𝑔𝑚) = (∅‘𝑚))
2423fveq2d 5425 . . . . . . . . . . . . 13 (𝑔 = ∅ → (𝐹‘(𝑔𝑚)) = (𝐹‘(∅‘𝑚)))
2524eleq2d 2209 . . . . . . . . . . . 12 (𝑔 = ∅ → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘(∅‘𝑚))))
2622, 25anbi12d 464 . . . . . . . . . . 11 (𝑔 = ∅ → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))))
2726rexbidv 2438 . . . . . . . . . 10 (𝑔 = ∅ → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))))
2821eqeq1d 2148 . . . . . . . . . . 11 (𝑔 = ∅ → (dom 𝑔 = ∅ ↔ dom ∅ = ∅))
2928anbi1d 460 . . . . . . . . . 10 (𝑔 = ∅ → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom ∅ = ∅ ∧ 𝑥𝐴)))
3027, 29orbi12d 782 . . . . . . . . 9 (𝑔 = ∅ → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))))
3130abbidv 2257 . . . . . . . 8 (𝑔 = ∅ → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))})
32 eqid 2139 . . . . . . . 8 (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
3331, 32fvmptg 5497 . . . . . . 7 ((∅ ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} ∈ V) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))})
3420, 33mpan 420 . . . . . 6 ({𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} ∈ V → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))})
3534, 17syl6eq 2188 . . . . 5 ({𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} ∈ V → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) = 𝐴)
3619, 35syl 14 . . . 4 (𝐴𝑉 → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) = 𝐴)
3736, 18eqeltrd 2216 . . 3 (𝐴𝑉 → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) ∈ V)
38 df-frec 6288 . . . . . 6 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
3938fveq1i 5422 . . . . 5 (frec(𝐹, 𝐴)‘∅) = ((recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)‘∅)
40 peano1 4508 . . . . . 6 ∅ ∈ ω
41 fvres 5445 . . . . . 6 (∅ ∈ ω → ((recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)‘∅) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))‘∅))
4240, 41ax-mp 5 . . . . 5 ((recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)‘∅) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))‘∅)
4339, 42eqtri 2160 . . . 4 (frec(𝐹, 𝐴)‘∅) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))‘∅)
44 eqid 2139 . . . . 5 recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
4544tfr0 6220 . . . 4 (((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) ∈ V → (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅))
4643, 45syl5eq 2184 . . 3 (((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) ∈ V → (frec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅))
4737, 46syl 14 . 2 (𝐴𝑉 → (frec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅))
4847, 36eqtrd 2172 1 (𝐴𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 697   = wceq 1331  wcel 1480  {cab 2125  wne 2308  wrex 2417  Vcvv 2686  c0 3363  cmpt 3989  suc csuc 4287  ωcom 4504  dom cdm 4539  cres 4541  cfv 5123  recscrecs 6201  freccfrec 6287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-res 4551  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131  df-recs 6202  df-frec 6288
This theorem is referenced by:  frecrdg  6305  frec2uz0d  10172  frec2uzrdg  10182  frecuzrdg0  10186  frecuzrdgg  10189  frecuzrdg0t  10195  seq3val  10231  seqvalcd  10232
  Copyright terms: Public domain W3C validator