ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec0g GIF version

Theorem frec0g 6541
Description: The initial value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 7-May-2020.)
Assertion
Ref Expression
frec0g (𝐴𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴)

Proof of Theorem frec0g
Dummy variables 𝑔 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dm0 4936 . . . . . . . . . 10 dom ∅ = ∅
21biantrur 303 . . . . . . . . 9 (𝑥𝐴 ↔ (dom ∅ = ∅ ∧ 𝑥𝐴))
3 vex 2802 . . . . . . . . . . . . . . . 16 𝑚 ∈ V
4 nsuceq0g 4508 . . . . . . . . . . . . . . . 16 (𝑚 ∈ V → suc 𝑚 ≠ ∅)
53, 4ax-mp 5 . . . . . . . . . . . . . . 15 suc 𝑚 ≠ ∅
65nesymi 2446 . . . . . . . . . . . . . 14 ¬ ∅ = suc 𝑚
71eqeq1i 2237 . . . . . . . . . . . . . 14 (dom ∅ = suc 𝑚 ↔ ∅ = suc 𝑚)
86, 7mtbir 675 . . . . . . . . . . . . 13 ¬ dom ∅ = suc 𝑚
98intnanr 935 . . . . . . . . . . . 12 ¬ (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))
109a1i 9 . . . . . . . . . . 11 (𝑚 ∈ ω → ¬ (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))))
1110nrex 2622 . . . . . . . . . 10 ¬ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))
1211biorfi 751 . . . . . . . . 9 ((dom ∅ = ∅ ∧ 𝑥𝐴) ↔ ((dom ∅ = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))))
13 orcom 733 . . . . . . . . 9 (((dom ∅ = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))) ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴)))
142, 12, 133bitri 206 . . . . . . . 8 (𝑥𝐴 ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴)))
1514abbii 2345 . . . . . . 7 {𝑥𝑥𝐴} = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))}
16 abid2 2350 . . . . . . 7 {𝑥𝑥𝐴} = 𝐴
1715, 16eqtr3i 2252 . . . . . 6 {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} = 𝐴
18 elex 2811 . . . . . 6 (𝐴𝑉𝐴 ∈ V)
1917, 18eqeltrid 2316 . . . . 5 (𝐴𝑉 → {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} ∈ V)
20 0ex 4210 . . . . . . 7 ∅ ∈ V
21 dmeq 4922 . . . . . . . . . . . . 13 (𝑔 = ∅ → dom 𝑔 = dom ∅)
2221eqeq1d 2238 . . . . . . . . . . . 12 (𝑔 = ∅ → (dom 𝑔 = suc 𝑚 ↔ dom ∅ = suc 𝑚))
23 fveq1 5625 . . . . . . . . . . . . . 14 (𝑔 = ∅ → (𝑔𝑚) = (∅‘𝑚))
2423fveq2d 5630 . . . . . . . . . . . . 13 (𝑔 = ∅ → (𝐹‘(𝑔𝑚)) = (𝐹‘(∅‘𝑚)))
2524eleq2d 2299 . . . . . . . . . . . 12 (𝑔 = ∅ → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘(∅‘𝑚))))
2622, 25anbi12d 473 . . . . . . . . . . 11 (𝑔 = ∅ → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))))
2726rexbidv 2531 . . . . . . . . . 10 (𝑔 = ∅ → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))))
2821eqeq1d 2238 . . . . . . . . . . 11 (𝑔 = ∅ → (dom 𝑔 = ∅ ↔ dom ∅ = ∅))
2928anbi1d 465 . . . . . . . . . 10 (𝑔 = ∅ → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom ∅ = ∅ ∧ 𝑥𝐴)))
3027, 29orbi12d 798 . . . . . . . . 9 (𝑔 = ∅ → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))))
3130abbidv 2347 . . . . . . . 8 (𝑔 = ∅ → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))})
32 eqid 2229 . . . . . . . 8 (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
3331, 32fvmptg 5709 . . . . . . 7 ((∅ ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} ∈ V) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))})
3420, 33mpan 424 . . . . . 6 ({𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} ∈ V → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))})
3534, 17eqtrdi 2278 . . . . 5 ({𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} ∈ V → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) = 𝐴)
3619, 35syl 14 . . . 4 (𝐴𝑉 → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) = 𝐴)
3736, 18eqeltrd 2306 . . 3 (𝐴𝑉 → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) ∈ V)
38 df-frec 6535 . . . . . 6 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
3938fveq1i 5627 . . . . 5 (frec(𝐹, 𝐴)‘∅) = ((recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)‘∅)
40 peano1 4685 . . . . . 6 ∅ ∈ ω
41 fvres 5650 . . . . . 6 (∅ ∈ ω → ((recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)‘∅) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))‘∅))
4240, 41ax-mp 5 . . . . 5 ((recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)‘∅) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))‘∅)
4339, 42eqtri 2250 . . . 4 (frec(𝐹, 𝐴)‘∅) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))‘∅)
44 eqid 2229 . . . . 5 recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
4544tfr0 6467 . . . 4 (((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) ∈ V → (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅))
4643, 45eqtrid 2274 . . 3 (((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) ∈ V → (frec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅))
4737, 46syl 14 . 2 (𝐴𝑉 → (frec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅))
4847, 36eqtrd 2262 1 (𝐴𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713   = wceq 1395  wcel 2200  {cab 2215  wne 2400  wrex 2509  Vcvv 2799  c0 3491  cmpt 4144  suc csuc 4455  ωcom 4681  dom cdm 4718  cres 4720  cfv 5317  recscrecs 6448  freccfrec 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-recs 6449  df-frec 6535
This theorem is referenced by:  frecrdg  6552  frec2uz0d  10616  frec2uzrdg  10626  frecuzrdg0  10630  frecuzrdgg  10633  frecuzrdg0t  10639  seq3val  10677  seqvalcd  10678
  Copyright terms: Public domain W3C validator