| Step | Hyp | Ref
| Expression |
| 1 | | dm0 4881 |
. . . . . . . . . 10
⊢ dom
∅ = ∅ |
| 2 | 1 | biantrur 303 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 ↔ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴)) |
| 3 | | vex 2766 |
. . . . . . . . . . . . . . . 16
⊢ 𝑚 ∈ V |
| 4 | | nsuceq0g 4454 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ V → suc 𝑚 ≠ ∅) |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ suc 𝑚 ≠ ∅ |
| 6 | 5 | nesymi 2413 |
. . . . . . . . . . . . . 14
⊢ ¬
∅ = suc 𝑚 |
| 7 | 1 | eqeq1i 2204 |
. . . . . . . . . . . . . 14
⊢ (dom
∅ = suc 𝑚 ↔
∅ = suc 𝑚) |
| 8 | 6, 7 | mtbir 672 |
. . . . . . . . . . . . 13
⊢ ¬
dom ∅ = suc 𝑚 |
| 9 | 8 | intnanr 931 |
. . . . . . . . . . . 12
⊢ ¬
(dom ∅ = suc 𝑚 ∧
𝑥 ∈ (𝐹‘(∅‘𝑚))) |
| 10 | 9 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ω → ¬
(dom ∅ = suc 𝑚 ∧
𝑥 ∈ (𝐹‘(∅‘𝑚)))) |
| 11 | 10 | nrex 2589 |
. . . . . . . . . 10
⊢ ¬
∃𝑚 ∈ ω
(dom ∅ = suc 𝑚 ∧
𝑥 ∈ (𝐹‘(∅‘𝑚))) |
| 12 | 11 | biorfi 747 |
. . . . . . . . 9
⊢ ((dom
∅ = ∅ ∧ 𝑥
∈ 𝐴) ↔ ((dom
∅ = ∅ ∧ 𝑥
∈ 𝐴) ∨ ∃𝑚 ∈ ω (dom ∅ =
suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))))) |
| 13 | | orcom 729 |
. . . . . . . . 9
⊢ (((dom
∅ = ∅ ∧ 𝑥
∈ 𝐴) ∨ ∃𝑚 ∈ ω (dom ∅ =
suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚)))) ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))) |
| 14 | 2, 12, 13 | 3bitri 206 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))) |
| 15 | 14 | abbii 2312 |
. . . . . . 7
⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))} |
| 16 | | abid2 2317 |
. . . . . . 7
⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| 17 | 15, 16 | eqtr3i 2219 |
. . . . . 6
⊢ {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ =
suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))} = 𝐴 |
| 18 | | elex 2774 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
| 19 | 17, 18 | eqeltrid 2283 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) |
| 20 | | 0ex 4161 |
. . . . . . 7
⊢ ∅
∈ V |
| 21 | | dmeq 4867 |
. . . . . . . . . . . . 13
⊢ (𝑔 = ∅ → dom 𝑔 = dom ∅) |
| 22 | 21 | eqeq1d 2205 |
. . . . . . . . . . . 12
⊢ (𝑔 = ∅ → (dom 𝑔 = suc 𝑚 ↔ dom ∅ = suc 𝑚)) |
| 23 | | fveq1 5560 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = ∅ → (𝑔‘𝑚) = (∅‘𝑚)) |
| 24 | 23 | fveq2d 5565 |
. . . . . . . . . . . . 13
⊢ (𝑔 = ∅ → (𝐹‘(𝑔‘𝑚)) = (𝐹‘(∅‘𝑚))) |
| 25 | 24 | eleq2d 2266 |
. . . . . . . . . . . 12
⊢ (𝑔 = ∅ → (𝑥 ∈ (𝐹‘(𝑔‘𝑚)) ↔ 𝑥 ∈ (𝐹‘(∅‘𝑚)))) |
| 26 | 22, 25 | anbi12d 473 |
. . . . . . . . . . 11
⊢ (𝑔 = ∅ → ((dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ↔ (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))))) |
| 27 | 26 | rexbidv 2498 |
. . . . . . . . . 10
⊢ (𝑔 = ∅ → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ↔ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))))) |
| 28 | 21 | eqeq1d 2205 |
. . . . . . . . . . 11
⊢ (𝑔 = ∅ → (dom 𝑔 = ∅ ↔ dom ∅ =
∅)) |
| 29 | 28 | anbi1d 465 |
. . . . . . . . . 10
⊢ (𝑔 = ∅ → ((dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴) ↔ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))) |
| 30 | 27, 29 | orbi12d 794 |
. . . . . . . . 9
⊢ (𝑔 = ∅ → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴)) ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴)))) |
| 31 | 30 | abbidv 2314 |
. . . . . . . 8
⊢ (𝑔 = ∅ → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| 32 | | eqid 2196 |
. . . . . . . 8
⊢ (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| 33 | 31, 32 | fvmptg 5640 |
. . . . . . 7
⊢ ((∅
∈ V ∧ {𝑥 ∣
(∃𝑚 ∈ ω
(dom ∅ = suc 𝑚 ∧
𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| 34 | 20, 33 | mpan 424 |
. . . . . 6
⊢ ({𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ =
suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| 35 | 34, 17 | eqtrdi 2245 |
. . . . 5
⊢ ({𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ =
suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) = 𝐴) |
| 36 | 19, 35 | syl 14 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) = 𝐴) |
| 37 | 36, 18 | eqeltrd 2273 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) ∈
V) |
| 38 | | df-frec 6458 |
. . . . . 6
⊢
frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ↾ ω) |
| 39 | 38 | fveq1i 5562 |
. . . . 5
⊢
(frec(𝐹, 𝐴)‘∅) = ((recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ↾
ω)‘∅) |
| 40 | | peano1 4631 |
. . . . . 6
⊢ ∅
∈ ω |
| 41 | | fvres 5585 |
. . . . . 6
⊢ (∅
∈ ω → ((recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ↾ ω)‘∅) =
(recs((𝑔 ∈ V ↦
{𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}))‘∅)) |
| 42 | 40, 41 | ax-mp 5 |
. . . . 5
⊢
((recs((𝑔 ∈ V
↦ {𝑥 ∣
(∃𝑚 ∈ ω
(dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ↾ ω)‘∅) =
(recs((𝑔 ∈ V ↦
{𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}))‘∅) |
| 43 | 39, 42 | eqtri 2217 |
. . . 4
⊢
(frec(𝐹, 𝐴)‘∅) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}))‘∅) |
| 44 | | eqid 2196 |
. . . . 5
⊢
recs((𝑔 ∈ V
↦ {𝑥 ∣
(∃𝑚 ∈ ω
(dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) |
| 45 | 44 | tfr0 6390 |
. . . 4
⊢ (((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) ∈ V →
(recs((𝑔 ∈ V ↦
{𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}))‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅)) |
| 46 | 43, 45 | eqtrid 2241 |
. . 3
⊢ (((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) ∈ V →
(frec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅)) |
| 47 | 37, 46 | syl 14 |
. 2
⊢ (𝐴 ∈ 𝑉 → (frec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅)) |
| 48 | 47, 36 | eqtrd 2229 |
1
⊢ (𝐴 ∈ 𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴) |