| Step | Hyp | Ref
 | Expression | 
| 1 |   | dm0 4880 | 
. . . . . . . . . 10
⊢ dom
∅ = ∅ | 
| 2 | 1 | biantrur 303 | 
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 ↔ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴)) | 
| 3 |   | vex 2766 | 
. . . . . . . . . . . . . . . 16
⊢ 𝑚 ∈ V | 
| 4 |   | nsuceq0g 4453 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ V → suc 𝑚 ≠ ∅) | 
| 5 | 3, 4 | ax-mp 5 | 
. . . . . . . . . . . . . . 15
⊢ suc 𝑚 ≠ ∅ | 
| 6 | 5 | nesymi 2413 | 
. . . . . . . . . . . . . 14
⊢  ¬
∅ = suc 𝑚 | 
| 7 | 1 | eqeq1i 2204 | 
. . . . . . . . . . . . . 14
⊢ (dom
∅ = suc 𝑚 ↔
∅ = suc 𝑚) | 
| 8 | 6, 7 | mtbir 672 | 
. . . . . . . . . . . . 13
⊢  ¬
dom ∅ = suc 𝑚 | 
| 9 | 8 | intnanr 931 | 
. . . . . . . . . . . 12
⊢  ¬
(dom ∅ = suc 𝑚 ∧
𝑥 ∈ (𝐹‘(∅‘𝑚))) | 
| 10 | 9 | a1i 9 | 
. . . . . . . . . . 11
⊢ (𝑚 ∈ ω → ¬
(dom ∅ = suc 𝑚 ∧
𝑥 ∈ (𝐹‘(∅‘𝑚)))) | 
| 11 | 10 | nrex 2589 | 
. . . . . . . . . 10
⊢  ¬
∃𝑚 ∈ ω
(dom ∅ = suc 𝑚 ∧
𝑥 ∈ (𝐹‘(∅‘𝑚))) | 
| 12 | 11 | biorfi 747 | 
. . . . . . . . 9
⊢ ((dom
∅ = ∅ ∧ 𝑥
∈ 𝐴) ↔ ((dom
∅ = ∅ ∧ 𝑥
∈ 𝐴) ∨ ∃𝑚 ∈ ω (dom ∅ =
suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))))) | 
| 13 |   | orcom 729 | 
. . . . . . . . 9
⊢ (((dom
∅ = ∅ ∧ 𝑥
∈ 𝐴) ∨ ∃𝑚 ∈ ω (dom ∅ =
suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚)))) ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))) | 
| 14 | 2, 12, 13 | 3bitri 206 | 
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))) | 
| 15 | 14 | abbii 2312 | 
. . . . . . 7
⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))} | 
| 16 |   | abid2 2317 | 
. . . . . . 7
⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | 
| 17 | 15, 16 | eqtr3i 2219 | 
. . . . . 6
⊢ {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ =
suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))} = 𝐴 | 
| 18 |   | elex 2774 | 
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | 
| 19 | 17, 18 | eqeltrid 2283 | 
. . . . 5
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) | 
| 20 |   | 0ex 4160 | 
. . . . . . 7
⊢ ∅
∈ V | 
| 21 |   | dmeq 4866 | 
. . . . . . . . . . . . 13
⊢ (𝑔 = ∅ → dom 𝑔 = dom ∅) | 
| 22 | 21 | eqeq1d 2205 | 
. . . . . . . . . . . 12
⊢ (𝑔 = ∅ → (dom 𝑔 = suc 𝑚 ↔ dom ∅ = suc 𝑚)) | 
| 23 |   | fveq1 5557 | 
. . . . . . . . . . . . . 14
⊢ (𝑔 = ∅ → (𝑔‘𝑚) = (∅‘𝑚)) | 
| 24 | 23 | fveq2d 5562 | 
. . . . . . . . . . . . 13
⊢ (𝑔 = ∅ → (𝐹‘(𝑔‘𝑚)) = (𝐹‘(∅‘𝑚))) | 
| 25 | 24 | eleq2d 2266 | 
. . . . . . . . . . . 12
⊢ (𝑔 = ∅ → (𝑥 ∈ (𝐹‘(𝑔‘𝑚)) ↔ 𝑥 ∈ (𝐹‘(∅‘𝑚)))) | 
| 26 | 22, 25 | anbi12d 473 | 
. . . . . . . . . . 11
⊢ (𝑔 = ∅ → ((dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ↔ (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))))) | 
| 27 | 26 | rexbidv 2498 | 
. . . . . . . . . 10
⊢ (𝑔 = ∅ → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ↔ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))))) | 
| 28 | 21 | eqeq1d 2205 | 
. . . . . . . . . . 11
⊢ (𝑔 = ∅ → (dom 𝑔 = ∅ ↔ dom ∅ =
∅)) | 
| 29 | 28 | anbi1d 465 | 
. . . . . . . . . 10
⊢ (𝑔 = ∅ → ((dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴) ↔ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))) | 
| 30 | 27, 29 | orbi12d 794 | 
. . . . . . . . 9
⊢ (𝑔 = ∅ → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴)) ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴)))) | 
| 31 | 30 | abbidv 2314 | 
. . . . . . . 8
⊢ (𝑔 = ∅ → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))}) | 
| 32 |   | eqid 2196 | 
. . . . . . . 8
⊢ (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) | 
| 33 | 31, 32 | fvmptg 5637 | 
. . . . . . 7
⊢ ((∅
∈ V ∧ {𝑥 ∣
(∃𝑚 ∈ ω
(dom ∅ = suc 𝑚 ∧
𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))}) | 
| 34 | 20, 33 | mpan 424 | 
. . . . . 6
⊢ ({𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ =
suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))}) | 
| 35 | 34, 17 | eqtrdi 2245 | 
. . . . 5
⊢ ({𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ =
suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) = 𝐴) | 
| 36 | 19, 35 | syl 14 | 
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) = 𝐴) | 
| 37 | 36, 18 | eqeltrd 2273 | 
. . 3
⊢ (𝐴 ∈ 𝑉 → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) ∈
V) | 
| 38 |   | df-frec 6449 | 
. . . . . 6
⊢
frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ↾ ω) | 
| 39 | 38 | fveq1i 5559 | 
. . . . 5
⊢
(frec(𝐹, 𝐴)‘∅) = ((recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ↾
ω)‘∅) | 
| 40 |   | peano1 4630 | 
. . . . . 6
⊢ ∅
∈ ω | 
| 41 |   | fvres 5582 | 
. . . . . 6
⊢ (∅
∈ ω → ((recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ↾ ω)‘∅) =
(recs((𝑔 ∈ V ↦
{𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}))‘∅)) | 
| 42 | 40, 41 | ax-mp 5 | 
. . . . 5
⊢
((recs((𝑔 ∈ V
↦ {𝑥 ∣
(∃𝑚 ∈ ω
(dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ↾ ω)‘∅) =
(recs((𝑔 ∈ V ↦
{𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}))‘∅) | 
| 43 | 39, 42 | eqtri 2217 | 
. . . 4
⊢
(frec(𝐹, 𝐴)‘∅) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}))‘∅) | 
| 44 |   | eqid 2196 | 
. . . . 5
⊢
recs((𝑔 ∈ V
↦ {𝑥 ∣
(∃𝑚 ∈ ω
(dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) | 
| 45 | 44 | tfr0 6381 | 
. . . 4
⊢ (((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) ∈ V →
(recs((𝑔 ∈ V ↦
{𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}))‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅)) | 
| 46 | 43, 45 | eqtrid 2241 | 
. . 3
⊢ (((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅) ∈ V →
(frec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅)) | 
| 47 | 37, 46 | syl 14 | 
. 2
⊢ (𝐴 ∈ 𝑉 → (frec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})‘∅)) | 
| 48 | 47, 36 | eqtrd 2229 | 
1
⊢ (𝐴 ∈ 𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴) |