| Step | Hyp | Ref
 | Expression | 
| 1 |   | eleq2 2260 | 
. . . . 5
⊢ (((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) →
(〈𝑥, ∅〉
∈ ((𝐴 ×
{∅}) ∪ (𝐵 ×
{{∅}})) ↔ 〈𝑥, ∅〉 ∈ ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})))) | 
| 2 |   | 0ex 4160 | 
. . . . . . . . 9
⊢ ∅
∈ V | 
| 3 | 2 | snid 3653 | 
. . . . . . . 8
⊢ ∅
∈ {∅} | 
| 4 |   | opelxp 4693 | 
. . . . . . . 8
⊢
(〈𝑥,
∅〉 ∈ (𝐴
× {∅}) ↔ (𝑥 ∈ 𝐴 ∧ ∅ ∈
{∅})) | 
| 5 | 3, 4 | mpbiran2 943 | 
. . . . . . 7
⊢
(〈𝑥,
∅〉 ∈ (𝐴
× {∅}) ↔ 𝑥
∈ 𝐴) | 
| 6 |   | opelxp 4693 | 
. . . . . . . 8
⊢
(〈𝑥,
∅〉 ∈ (𝐵
× {{∅}}) ↔ (𝑥 ∈ 𝐵 ∧ ∅ ∈
{{∅}})) | 
| 7 |   | 0nep0 4198 | 
. . . . . . . . . 10
⊢ ∅
≠ {∅} | 
| 8 | 2 | elsn 3638 | 
. . . . . . . . . 10
⊢ (∅
∈ {{∅}} ↔ ∅ = {∅}) | 
| 9 | 7, 8 | nemtbir 2456 | 
. . . . . . . . 9
⊢  ¬
∅ ∈ {{∅}} | 
| 10 | 9 | bianfi 949 | 
. . . . . . . 8
⊢ (∅
∈ {{∅}} ↔ (𝑥 ∈ 𝐵 ∧ ∅ ∈
{{∅}})) | 
| 11 | 6, 10 | bitr4i 187 | 
. . . . . . 7
⊢
(〈𝑥,
∅〉 ∈ (𝐵
× {{∅}}) ↔ ∅ ∈ {{∅}}) | 
| 12 | 5, 11 | orbi12i 765 | 
. . . . . 6
⊢
((〈𝑥,
∅〉 ∈ (𝐴
× {∅}) ∨ 〈𝑥, ∅〉 ∈ (𝐵 × {{∅}})) ↔ (𝑥 ∈ 𝐴 ∨ ∅ ∈
{{∅}})) | 
| 13 |   | elun 3304 | 
. . . . . 6
⊢
(〈𝑥,
∅〉 ∈ ((𝐴
× {∅}) ∪ (𝐵
× {{∅}})) ↔ (〈𝑥, ∅〉 ∈ (𝐴 × {∅}) ∨ 〈𝑥, ∅〉 ∈ (𝐵 ×
{{∅}}))) | 
| 14 | 9 | biorfi 747 | 
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ ∅ ∈
{{∅}})) | 
| 15 | 12, 13, 14 | 3bitr4ri 213 | 
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↔ 〈𝑥, ∅〉 ∈ ((𝐴 × {∅}) ∪ (𝐵 × {{∅}}))) | 
| 16 |   | opelxp 4693 | 
. . . . . . . 8
⊢
(〈𝑥,
∅〉 ∈ (𝐶
× {∅}) ↔ (𝑥 ∈ 𝐶 ∧ ∅ ∈
{∅})) | 
| 17 | 3, 16 | mpbiran2 943 | 
. . . . . . 7
⊢
(〈𝑥,
∅〉 ∈ (𝐶
× {∅}) ↔ 𝑥
∈ 𝐶) | 
| 18 |   | opelxp 4693 | 
. . . . . . . 8
⊢
(〈𝑥,
∅〉 ∈ (𝐷
× {{∅}}) ↔ (𝑥 ∈ 𝐷 ∧ ∅ ∈
{{∅}})) | 
| 19 | 9 | bianfi 949 | 
. . . . . . . 8
⊢ (∅
∈ {{∅}} ↔ (𝑥 ∈ 𝐷 ∧ ∅ ∈
{{∅}})) | 
| 20 | 18, 19 | bitr4i 187 | 
. . . . . . 7
⊢
(〈𝑥,
∅〉 ∈ (𝐷
× {{∅}}) ↔ ∅ ∈ {{∅}}) | 
| 21 | 17, 20 | orbi12i 765 | 
. . . . . 6
⊢
((〈𝑥,
∅〉 ∈ (𝐶
× {∅}) ∨ 〈𝑥, ∅〉 ∈ (𝐷 × {{∅}})) ↔ (𝑥 ∈ 𝐶 ∨ ∅ ∈
{{∅}})) | 
| 22 |   | elun 3304 | 
. . . . . 6
⊢
(〈𝑥,
∅〉 ∈ ((𝐶
× {∅}) ∪ (𝐷
× {{∅}})) ↔ (〈𝑥, ∅〉 ∈ (𝐶 × {∅}) ∨ 〈𝑥, ∅〉 ∈ (𝐷 ×
{{∅}}))) | 
| 23 | 9 | biorfi 747 | 
. . . . . 6
⊢ (𝑥 ∈ 𝐶 ↔ (𝑥 ∈ 𝐶 ∨ ∅ ∈
{{∅}})) | 
| 24 | 21, 22, 23 | 3bitr4ri 213 | 
. . . . 5
⊢ (𝑥 ∈ 𝐶 ↔ 〈𝑥, ∅〉 ∈ ((𝐶 × {∅}) ∪ (𝐷 × {{∅}}))) | 
| 25 | 1, 15, 24 | 3bitr4g 223 | 
. . . 4
⊢ (((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) →
(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶)) | 
| 26 | 25 | eqrdv 2194 | 
. . 3
⊢ (((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) →
𝐴 = 𝐶) | 
| 27 |   | eleq2 2260 | 
. . . . 5
⊢ (((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) →
(〈𝑥, {∅}〉
∈ ((𝐴 ×
{∅}) ∪ (𝐵 ×
{{∅}})) ↔ 〈𝑥, {∅}〉 ∈ ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})))) | 
| 28 |   | opelxp 4693 | 
. . . . . . . 8
⊢
(〈𝑥,
{∅}〉 ∈ (𝐴
× {∅}) ↔ (𝑥 ∈ 𝐴 ∧ {∅} ∈
{∅})) | 
| 29 |   | p0ex 4221 | 
. . . . . . . . . . . 12
⊢ {∅}
∈ V | 
| 30 | 29 | elsn 3638 | 
. . . . . . . . . . 11
⊢
({∅} ∈ {∅} ↔ {∅} = ∅) | 
| 31 |   | eqcom 2198 | 
. . . . . . . . . . 11
⊢
({∅} = ∅ ↔ ∅ = {∅}) | 
| 32 | 30, 31 | bitri 184 | 
. . . . . . . . . 10
⊢
({∅} ∈ {∅} ↔ ∅ = {∅}) | 
| 33 | 7, 32 | nemtbir 2456 | 
. . . . . . . . 9
⊢  ¬
{∅} ∈ {∅} | 
| 34 | 33 | bianfi 949 | 
. . . . . . . 8
⊢
({∅} ∈ {∅} ↔ (𝑥 ∈ 𝐴 ∧ {∅} ∈
{∅})) | 
| 35 | 28, 34 | bitr4i 187 | 
. . . . . . 7
⊢
(〈𝑥,
{∅}〉 ∈ (𝐴
× {∅}) ↔ {∅} ∈ {∅}) | 
| 36 | 29 | snid 3653 | 
. . . . . . . 8
⊢ {∅}
∈ {{∅}} | 
| 37 |   | opelxp 4693 | 
. . . . . . . 8
⊢
(〈𝑥,
{∅}〉 ∈ (𝐵
× {{∅}}) ↔ (𝑥 ∈ 𝐵 ∧ {∅} ∈
{{∅}})) | 
| 38 | 36, 37 | mpbiran2 943 | 
. . . . . . 7
⊢
(〈𝑥,
{∅}〉 ∈ (𝐵
× {{∅}}) ↔ 𝑥 ∈ 𝐵) | 
| 39 | 35, 38 | orbi12i 765 | 
. . . . . 6
⊢
((〈𝑥,
{∅}〉 ∈ (𝐴
× {∅}) ∨ 〈𝑥, {∅}〉 ∈ (𝐵 × {{∅}})) ↔ ({∅}
∈ {∅} ∨ 𝑥
∈ 𝐵)) | 
| 40 |   | elun 3304 | 
. . . . . 6
⊢
(〈𝑥,
{∅}〉 ∈ ((𝐴
× {∅}) ∪ (𝐵
× {{∅}})) ↔ (〈𝑥, {∅}〉 ∈ (𝐴 × {∅}) ∨ 〈𝑥, {∅}〉 ∈ (𝐵 ×
{{∅}}))) | 
| 41 |   | biorf 745 | 
. . . . . . 7
⊢ (¬
{∅} ∈ {∅} → (𝑥 ∈ 𝐵 ↔ ({∅} ∈ {∅} ∨
𝑥 ∈ 𝐵))) | 
| 42 | 33, 41 | ax-mp 5 | 
. . . . . 6
⊢ (𝑥 ∈ 𝐵 ↔ ({∅} ∈ {∅} ∨
𝑥 ∈ 𝐵)) | 
| 43 | 39, 40, 42 | 3bitr4ri 213 | 
. . . . 5
⊢ (𝑥 ∈ 𝐵 ↔ 〈𝑥, {∅}〉 ∈ ((𝐴 × {∅}) ∪ (𝐵 × {{∅}}))) | 
| 44 |   | opelxp 4693 | 
. . . . . . . 8
⊢
(〈𝑥,
{∅}〉 ∈ (𝐶
× {∅}) ↔ (𝑥 ∈ 𝐶 ∧ {∅} ∈
{∅})) | 
| 45 | 33 | bianfi 949 | 
. . . . . . . 8
⊢
({∅} ∈ {∅} ↔ (𝑥 ∈ 𝐶 ∧ {∅} ∈
{∅})) | 
| 46 | 44, 45 | bitr4i 187 | 
. . . . . . 7
⊢
(〈𝑥,
{∅}〉 ∈ (𝐶
× {∅}) ↔ {∅} ∈ {∅}) | 
| 47 |   | opelxp 4693 | 
. . . . . . . 8
⊢
(〈𝑥,
{∅}〉 ∈ (𝐷
× {{∅}}) ↔ (𝑥 ∈ 𝐷 ∧ {∅} ∈
{{∅}})) | 
| 48 | 36, 47 | mpbiran2 943 | 
. . . . . . 7
⊢
(〈𝑥,
{∅}〉 ∈ (𝐷
× {{∅}}) ↔ 𝑥 ∈ 𝐷) | 
| 49 | 46, 48 | orbi12i 765 | 
. . . . . 6
⊢
((〈𝑥,
{∅}〉 ∈ (𝐶
× {∅}) ∨ 〈𝑥, {∅}〉 ∈ (𝐷 × {{∅}})) ↔ ({∅}
∈ {∅} ∨ 𝑥
∈ 𝐷)) | 
| 50 |   | elun 3304 | 
. . . . . 6
⊢
(〈𝑥,
{∅}〉 ∈ ((𝐶
× {∅}) ∪ (𝐷
× {{∅}})) ↔ (〈𝑥, {∅}〉 ∈ (𝐶 × {∅}) ∨ 〈𝑥, {∅}〉 ∈ (𝐷 ×
{{∅}}))) | 
| 51 |   | biorf 745 | 
. . . . . . 7
⊢ (¬
{∅} ∈ {∅} → (𝑥 ∈ 𝐷 ↔ ({∅} ∈ {∅} ∨
𝑥 ∈ 𝐷))) | 
| 52 | 33, 51 | ax-mp 5 | 
. . . . . 6
⊢ (𝑥 ∈ 𝐷 ↔ ({∅} ∈ {∅} ∨
𝑥 ∈ 𝐷)) | 
| 53 | 49, 50, 52 | 3bitr4ri 213 | 
. . . . 5
⊢ (𝑥 ∈ 𝐷 ↔ 〈𝑥, {∅}〉 ∈ ((𝐶 × {∅}) ∪ (𝐷 × {{∅}}))) | 
| 54 | 27, 43, 53 | 3bitr4g 223 | 
. . . 4
⊢ (((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) →
(𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐷)) | 
| 55 | 54 | eqrdv 2194 | 
. . 3
⊢ (((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) →
𝐵 = 𝐷) | 
| 56 | 26, 55 | jca 306 | 
. 2
⊢ (((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) →
(𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 57 |   | xpeq1 4677 | 
. . 3
⊢ (𝐴 = 𝐶 → (𝐴 × {∅}) = (𝐶 × {∅})) | 
| 58 |   | xpeq1 4677 | 
. . 3
⊢ (𝐵 = 𝐷 → (𝐵 × {{∅}}) = (𝐷 × {{∅}})) | 
| 59 |   | uneq12 3312 | 
. . 3
⊢ (((𝐴 × {∅}) = (𝐶 × {∅}) ∧ (𝐵 × {{∅}}) = (𝐷 × {{∅}})) →
((𝐴 × {∅})
∪ (𝐵 ×
{{∅}})) = ((𝐶 ×
{∅}) ∪ (𝐷 ×
{{∅}}))) | 
| 60 | 57, 58, 59 | syl2an 289 | 
. 2
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}}))) | 
| 61 | 56, 60 | impbii 126 | 
1
⊢ (((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) ↔
(𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |