ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0 GIF version

Theorem un0 3480
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
un0 (𝐴 ∪ ∅) = 𝐴

Proof of Theorem un0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 noel 3450 . . . 4 ¬ 𝑥 ∈ ∅
21biorfi 747 . . 3 (𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ ∅))
32bicomi 132 . 2 ((𝑥𝐴𝑥 ∈ ∅) ↔ 𝑥𝐴)
43uneqri 3301 1 (𝐴 ∪ ∅) = 𝐴
Colors of variables: wff set class
Syntax hints:  wo 709   = wceq 1364  wcel 2164  cun 3151  c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-un 3157  df-nul 3447
This theorem is referenced by:  un00  3493  disjssun  3510  difun2  3526  difdifdirss  3531  disjpr2  3682  prprc1  3726  diftpsn3  3759  iununir  3996  exmid1stab  4237  suc0  4442  sucprc  4443  fvun1  5623  fmptpr  5750  fvunsng  5752  fvsnun1  5755  fvsnun2  5756  fsnunfv  5759  fsnunres  5760  rdg0  6440  omv2  6518  unsnfidcex  6976  unfidisj  6978  undifdc  6980  ssfirab  6990  dju0en  7274  djuassen  7277  fzsuc2  10145  fseq1p1m1  10160  hashunlem  10875  ennnfonelem1  12564  setsresg  12656  setsslid  12669  fmelpw1o  15298
  Copyright terms: Public domain W3C validator