![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > un0 | GIF version |
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
un0 | ⊢ (𝐴 ∪ ∅) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3333 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | biorfi 718 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅)) |
3 | 2 | bicomi 131 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅) ↔ 𝑥 ∈ 𝐴) |
4 | 3 | uneqri 3184 | 1 ⊢ (𝐴 ∪ ∅) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∨ wo 680 = wceq 1314 ∈ wcel 1463 ∪ cun 3035 ∅c0 3329 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-v 2659 df-dif 3039 df-un 3041 df-nul 3330 |
This theorem is referenced by: un00 3375 disjssun 3392 difun2 3408 difdifdirss 3413 disjpr2 3553 prprc1 3597 diftpsn3 3627 iununir 3862 suc0 4293 sucprc 4294 fvun1 5441 fmptpr 5566 fvunsng 5568 fvsnun1 5571 fvsnun2 5572 fsnunfv 5575 fsnunres 5576 rdg0 6238 omv2 6315 unsnfidcex 6761 unfidisj 6763 undifdc 6765 ssfirab 6774 dju0en 7018 djuassen 7021 fzsuc2 9752 fseq1p1m1 9767 hashunlem 10443 ennnfonelem1 11765 setsresg 11840 setsslid 11852 exmid1stab 12887 |
Copyright terms: Public domain | W3C validator |