ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0 GIF version

Theorem un0 3458
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
un0 (𝐴 ∪ ∅) = 𝐴

Proof of Theorem un0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 noel 3428 . . . 4 ¬ 𝑥 ∈ ∅
21biorfi 746 . . 3 (𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ ∅))
32bicomi 132 . 2 ((𝑥𝐴𝑥 ∈ ∅) ↔ 𝑥𝐴)
43uneqri 3279 1 (𝐴 ∪ ∅) = 𝐴
Colors of variables: wff set class
Syntax hints:  wo 708   = wceq 1353  wcel 2148  cun 3129  c0 3424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-un 3135  df-nul 3425
This theorem is referenced by:  un00  3471  disjssun  3488  difun2  3504  difdifdirss  3509  disjpr2  3658  prprc1  3702  diftpsn3  3735  iununir  3972  exmid1stab  4210  suc0  4413  sucprc  4414  fvun1  5584  fmptpr  5710  fvunsng  5712  fvsnun1  5715  fvsnun2  5716  fsnunfv  5719  fsnunres  5720  rdg0  6390  omv2  6468  unsnfidcex  6921  unfidisj  6923  undifdc  6925  ssfirab  6935  dju0en  7215  djuassen  7218  fzsuc2  10081  fseq1p1m1  10096  hashunlem  10786  ennnfonelem1  12410  setsresg  12502  setsslid  12515  fmelpw1o  14643
  Copyright terms: Public domain W3C validator