ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0 GIF version

Theorem un0 3485
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
un0 (𝐴 ∪ ∅) = 𝐴

Proof of Theorem un0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 noel 3455 . . . 4 ¬ 𝑥 ∈ ∅
21biorfi 747 . . 3 (𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ ∅))
32bicomi 132 . 2 ((𝑥𝐴𝑥 ∈ ∅) ↔ 𝑥𝐴)
43uneqri 3306 1 (𝐴 ∪ ∅) = 𝐴
Colors of variables: wff set class
Syntax hints:  wo 709   = wceq 1364  wcel 2167  cun 3155  c0 3451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3452
This theorem is referenced by:  un00  3498  disjssun  3515  difun2  3531  difdifdirss  3536  disjpr2  3687  prprc1  3731  diftpsn3  3764  iununir  4001  exmid1stab  4242  suc0  4447  sucprc  4448  fvun1  5630  fmptpr  5757  fvunsng  5759  fvsnun1  5762  fvsnun2  5763  fsnunfv  5766  fsnunres  5767  rdg0  6454  omv2  6532  unsnfidcex  6990  unfidisj  6992  undifdc  6994  ssfirab  7006  dju0en  7297  djuassen  7300  fzsuc2  10171  fseq1p1m1  10186  hashunlem  10913  ennnfonelem1  12649  setsresg  12741  setsslid  12754  lgsquadlem2  15403  fmelpw1o  15536
  Copyright terms: Public domain W3C validator