| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > un0 | GIF version | ||
| Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| un0 | ⊢ (𝐴 ∪ ∅) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3495 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | biorfi 751 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅)) |
| 3 | 2 | bicomi 132 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅) ↔ 𝑥 ∈ 𝐴) |
| 4 | 3 | uneqri 3346 | 1 ⊢ (𝐴 ∪ ∅) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 713 = wceq 1395 ∈ wcel 2200 ∪ cun 3195 ∅c0 3491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 |
| This theorem is referenced by: un00 3538 disjssun 3555 difun2 3571 difdifdirss 3576 disjpr2 3730 prprc1 3774 diftpsn3 3808 iununir 4048 exmid1stab 4291 suc0 4499 sucprc 4500 fvun1 5693 fmptpr 5824 fvunsng 5826 fvsnun1 5829 fvsnun2 5830 fsnunfv 5833 fsnunres 5834 rdg0 6523 omv2 6601 unsnfidcex 7070 unfidisj 7072 undifdc 7074 ssfirab 7086 dju0en 7384 djuassen 7387 fmelpw1o 7420 fzsuc2 10263 fseq1p1m1 10278 hashunlem 11013 ennnfonelem1 12964 setsresg 13056 setsslid 13069 lgsquadlem2 15742 |
| Copyright terms: Public domain | W3C validator |