| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > un0 | GIF version | ||
| Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| un0 | ⊢ (𝐴 ∪ ∅) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3454 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | biorfi 747 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅)) |
| 3 | 2 | bicomi 132 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅) ↔ 𝑥 ∈ 𝐴) |
| 4 | 3 | uneqri 3305 | 1 ⊢ (𝐴 ∪ ∅) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 709 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 ∅c0 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-nul 3451 |
| This theorem is referenced by: un00 3497 disjssun 3514 difun2 3530 difdifdirss 3535 disjpr2 3686 prprc1 3730 diftpsn3 3763 iununir 4000 exmid1stab 4241 suc0 4446 sucprc 4447 fvun1 5627 fmptpr 5754 fvunsng 5756 fvsnun1 5759 fvsnun2 5760 fsnunfv 5763 fsnunres 5764 rdg0 6445 omv2 6523 unsnfidcex 6981 unfidisj 6983 undifdc 6985 ssfirab 6997 dju0en 7281 djuassen 7284 fzsuc2 10154 fseq1p1m1 10169 hashunlem 10896 ennnfonelem1 12624 setsresg 12716 setsslid 12729 lgsquadlem2 15319 fmelpw1o 15452 |
| Copyright terms: Public domain | W3C validator |