| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > un0 | GIF version | ||
| Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| un0 | ⊢ (𝐴 ∪ ∅) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3466 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | biorfi 748 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅)) |
| 3 | 2 | bicomi 132 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅) ↔ 𝑥 ∈ 𝐴) |
| 4 | 3 | uneqri 3317 | 1 ⊢ (𝐴 ∪ ∅) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 710 = wceq 1373 ∈ wcel 2177 ∪ cun 3166 ∅c0 3462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3170 df-un 3172 df-nul 3463 |
| This theorem is referenced by: un00 3509 disjssun 3526 difun2 3542 difdifdirss 3547 disjpr2 3699 prprc1 3743 diftpsn3 3777 iununir 4014 exmid1stab 4257 suc0 4463 sucprc 4464 fvun1 5655 fmptpr 5786 fvunsng 5788 fvsnun1 5791 fvsnun2 5792 fsnunfv 5795 fsnunres 5796 rdg0 6483 omv2 6561 unsnfidcex 7029 unfidisj 7031 undifdc 7033 ssfirab 7045 dju0en 7339 djuassen 7342 fzsuc2 10214 fseq1p1m1 10229 hashunlem 10962 ennnfonelem1 12828 setsresg 12920 setsslid 12933 lgsquadlem2 15605 fmelpw1o 15856 |
| Copyright terms: Public domain | W3C validator |