Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > un0 | GIF version |
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
un0 | ⊢ (𝐴 ∪ ∅) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3413 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | biorfi 736 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅)) |
3 | 2 | bicomi 131 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅) ↔ 𝑥 ∈ 𝐴) |
4 | 3 | uneqri 3264 | 1 ⊢ (𝐴 ∪ ∅) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∨ wo 698 = wceq 1343 ∈ wcel 2136 ∪ cun 3114 ∅c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-nul 3410 |
This theorem is referenced by: un00 3455 disjssun 3472 difun2 3488 difdifdirss 3493 disjpr2 3640 prprc1 3684 diftpsn3 3714 iununir 3949 suc0 4389 sucprc 4390 fvun1 5552 fmptpr 5677 fvunsng 5679 fvsnun1 5682 fvsnun2 5683 fsnunfv 5686 fsnunres 5687 rdg0 6355 omv2 6433 unsnfidcex 6885 unfidisj 6887 undifdc 6889 ssfirab 6899 dju0en 7170 djuassen 7173 fzsuc2 10014 fseq1p1m1 10029 hashunlem 10717 ennnfonelem1 12340 setsresg 12432 setsslid 12444 fmelpw1o 13688 exmid1stab 13880 |
Copyright terms: Public domain | W3C validator |