![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > un0 | GIF version |
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
un0 | ⊢ (𝐴 ∪ ∅) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3450 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | biorfi 747 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅)) |
3 | 2 | bicomi 132 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅) ↔ 𝑥 ∈ 𝐴) |
4 | 3 | uneqri 3301 | 1 ⊢ (𝐴 ∪ ∅) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∨ wo 709 = wceq 1364 ∈ wcel 2164 ∪ cun 3151 ∅c0 3446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-un 3157 df-nul 3447 |
This theorem is referenced by: un00 3493 disjssun 3510 difun2 3526 difdifdirss 3531 disjpr2 3682 prprc1 3726 diftpsn3 3759 iununir 3996 exmid1stab 4237 suc0 4442 sucprc 4443 fvun1 5623 fmptpr 5750 fvunsng 5752 fvsnun1 5755 fvsnun2 5756 fsnunfv 5759 fsnunres 5760 rdg0 6440 omv2 6518 unsnfidcex 6976 unfidisj 6978 undifdc 6980 ssfirab 6990 dju0en 7274 djuassen 7277 fzsuc2 10145 fseq1p1m1 10160 hashunlem 10875 ennnfonelem1 12564 setsresg 12656 setsslid 12669 fmelpw1o 15298 |
Copyright terms: Public domain | W3C validator |