![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > un0 | GIF version |
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
un0 | ⊢ (𝐴 ∪ ∅) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3451 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | biorfi 747 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅)) |
3 | 2 | bicomi 132 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅) ↔ 𝑥 ∈ 𝐴) |
4 | 3 | uneqri 3302 | 1 ⊢ (𝐴 ∪ ∅) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∨ wo 709 = wceq 1364 ∈ wcel 2164 ∪ cun 3152 ∅c0 3447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 df-un 3158 df-nul 3448 |
This theorem is referenced by: un00 3494 disjssun 3511 difun2 3527 difdifdirss 3532 disjpr2 3683 prprc1 3727 diftpsn3 3760 iununir 3997 exmid1stab 4238 suc0 4443 sucprc 4444 fvun1 5624 fmptpr 5751 fvunsng 5753 fvsnun1 5756 fvsnun2 5757 fsnunfv 5760 fsnunres 5761 rdg0 6442 omv2 6520 unsnfidcex 6978 unfidisj 6980 undifdc 6982 ssfirab 6992 dju0en 7276 djuassen 7279 fzsuc2 10148 fseq1p1m1 10163 hashunlem 10878 ennnfonelem1 12567 setsresg 12659 setsslid 12672 lgsquadlem2 15235 fmelpw1o 15368 |
Copyright terms: Public domain | W3C validator |