ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0 GIF version

Theorem un0 3525
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
un0 (𝐴 ∪ ∅) = 𝐴

Proof of Theorem un0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 noel 3495 . . . 4 ¬ 𝑥 ∈ ∅
21biorfi 751 . . 3 (𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ ∅))
32bicomi 132 . 2 ((𝑥𝐴𝑥 ∈ ∅) ↔ 𝑥𝐴)
43uneqri 3346 1 (𝐴 ∪ ∅) = 𝐴
Colors of variables: wff set class
Syntax hints:  wo 713   = wceq 1395  wcel 2200  cun 3195  c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492
This theorem is referenced by:  un00  3538  disjssun  3555  difun2  3571  difdifdirss  3576  disjpr2  3730  prprc1  3774  diftpsn3  3808  iununir  4048  exmid1stab  4291  suc0  4499  sucprc  4500  fvun1  5693  fmptpr  5824  fvunsng  5826  fvsnun1  5829  fvsnun2  5830  fsnunfv  5833  fsnunres  5834  rdg0  6523  omv2  6601  unsnfidcex  7070  unfidisj  7072  undifdc  7074  ssfirab  7086  dju0en  7384  djuassen  7387  fmelpw1o  7420  fzsuc2  10263  fseq1p1m1  10278  hashunlem  11013  ennnfonelem1  12964  setsresg  13056  setsslid  13069  lgsquadlem2  15742
  Copyright terms: Public domain W3C validator