| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > un0 | GIF version | ||
| Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| un0 | ⊢ (𝐴 ∪ ∅) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3495 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | biorfi 751 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅)) |
| 3 | 2 | bicomi 132 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅) ↔ 𝑥 ∈ 𝐴) |
| 4 | 3 | uneqri 3346 | 1 ⊢ (𝐴 ∪ ∅) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 713 = wceq 1395 ∈ wcel 2200 ∪ cun 3195 ∅c0 3491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 |
| This theorem is referenced by: un00 3538 disjssun 3555 difun2 3571 difdifdirss 3576 disjpr2 3730 prprc1 3775 diftpsn3 3809 iununir 4049 exmid1stab 4292 suc0 4502 sucprc 4503 fvun1 5702 fmptpr 5835 fvunsng 5837 fvsnun1 5840 fvsnun2 5841 fsnunfv 5844 fsnunres 5845 rdg0 6539 omv2 6619 unsnfidcex 7090 unfidisj 7092 undifdc 7094 ssfirab 7106 dju0en 7404 djuassen 7407 fmelpw1o 7440 fzsuc2 10283 fseq1p1m1 10298 hashunlem 11034 ennnfonelem1 12986 setsresg 13078 setsslid 13091 lgsquadlem2 15765 |
| Copyright terms: Public domain | W3C validator |