| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > un0 | GIF version | ||
| Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| un0 | ⊢ (𝐴 ∪ ∅) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3455 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | biorfi 747 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅)) |
| 3 | 2 | bicomi 132 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅) ↔ 𝑥 ∈ 𝐴) |
| 4 | 3 | uneqri 3306 | 1 ⊢ (𝐴 ∪ ∅) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 709 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 ∅c0 3451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-nul 3452 |
| This theorem is referenced by: un00 3498 disjssun 3515 difun2 3531 difdifdirss 3536 disjpr2 3687 prprc1 3731 diftpsn3 3764 iununir 4001 exmid1stab 4242 suc0 4447 sucprc 4448 fvun1 5630 fmptpr 5757 fvunsng 5759 fvsnun1 5762 fvsnun2 5763 fsnunfv 5766 fsnunres 5767 rdg0 6454 omv2 6532 unsnfidcex 6990 unfidisj 6992 undifdc 6994 ssfirab 7006 dju0en 7297 djuassen 7300 fzsuc2 10171 fseq1p1m1 10186 hashunlem 10913 ennnfonelem1 12649 setsresg 12741 setsslid 12754 lgsquadlem2 15403 fmelpw1o 15536 |
| Copyright terms: Public domain | W3C validator |