Theorem List for Intuitionistic Logic Explorer - 15001-15100 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | dvfvalap 15001* |
Value and set bounds on the derivative operator. (Contributed by Mario
Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
|
| ⊢ 𝑇 = (𝐾 ↾t 𝑆)
& ⊢ 𝐾 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ((𝑆 D 𝐹) = ∪
𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ))) |
| |
| Theorem | eldvap 15002* |
The differentiable predicate. A function 𝐹 is differentiable at
𝐵 with derivative 𝐶 iff
𝐹
is defined in a neighborhood of
𝐵 and the difference quotient has
limit 𝐶 at 𝐵.
(Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon,
27-Jun-2023.)
|
| ⊢ 𝑇 = (𝐾 ↾t 𝑆)
& ⊢ 𝐾 = (MetOpen‘(abs ∘ −
))
& ⊢ 𝐺 = (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 limℂ 𝐵)))) |
| |
| Theorem | dvcl 15003 |
The derivative function takes values in the complex numbers.
(Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario
Carneiro, 9-Feb-2015.)
|
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝐵(𝑆 D 𝐹)𝐶) → 𝐶 ∈ ℂ) |
| |
| Theorem | dvbssntrcntop 15004 |
The set of differentiable points is a subset of the interior of the
domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.)
(Revised by Jim Kingdon, 27-Jun-2023.)
|
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆)
& ⊢ 𝐽 = (𝐾 ↾t 𝑆)
& ⊢ 𝐾 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘𝐽)‘𝐴)) |
| |
| Theorem | dvbss 15005 |
The set of differentiable points is a subset of the domain of the
function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by
Mario Carneiro, 9-Feb-2015.)
|
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴) |
| |
| Theorem | dvbsssg 15006 |
The set of differentiable points is a subset of the ambient topology.
(Contributed by Mario Carneiro, 18-Mar-2015.) (Revised by Jim Kingdon,
28-Jun-2023.)
|
| ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm
𝑆)) → dom (𝑆 D 𝐹) ⊆ 𝑆) |
| |
| Theorem | recnprss 15007 |
Both ℝ and ℂ are
subsets of ℂ. (Contributed by Mario
Carneiro, 10-Feb-2015.)
|
| ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆
ℂ) |
| |
| Theorem | dvfgg 15008 |
Explicitly write out the functionality condition on derivative for
𝑆 =
ℝ and ℂ. (Contributed by Mario
Carneiro, 9-Feb-2015.)
(Revised by Jim Kingdon, 28-Jun-2023.)
|
| ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| |
| Theorem | dvfpm 15009 |
The derivative is a function. (Contributed by Mario Carneiro,
8-Aug-2014.) (Revised by Jim Kingdon, 28-Jul-2023.)
|
| ⊢ (𝐹 ∈ (ℂ ↑pm
ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ) |
| |
| Theorem | dvfcnpm 15010 |
The derivative is a function. (Contributed by Mario Carneiro,
9-Feb-2015.) (Revised by Jim Kingdon, 28-Jul-2023.)
|
| ⊢ (𝐹 ∈ (ℂ ↑pm
ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ) |
| |
| Theorem | dvidlemap 15011* |
Lemma for dvid 15015 and dvconst 15014. (Contributed by Mario Carneiro,
8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
|
| ⊢ (𝜑 → 𝐹:ℂ⟶ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵)
& ⊢ 𝐵 ∈ ℂ
⇒ ⊢ (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵})) |
| |
| Theorem | dvidrelem 15012* |
Lemma for dvidre 15017 and dvconstre 15016. Analogue of dvidlemap 15011 for real
numbers rather than complex numbers. (Contributed by Jim Kingdon,
3-Oct-2025.)
|
| ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵)
& ⊢ 𝐵 ∈ ℂ
⇒ ⊢ (𝜑 → (ℝ D 𝐹) = (ℝ × {𝐵})) |
| |
| Theorem | dvidsslem 15013* |
Lemma for dvconstss 15018. Analogue of dvidlemap 15011 where 𝐹 is defined
on an open subset of the real or complex numbers. (Contributed by Jim
Kingdon, 3-Oct-2025.)
|
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ 𝐽 = (𝐾 ↾t 𝑆)
& ⊢ 𝐾 = (MetOpen‘(abs ∘ −
))
& ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ 𝐽)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵)
& ⊢ 𝐵 ∈ ℂ
⇒ ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑋 × {𝐵})) |
| |
| Theorem | dvconst 15014 |
Derivative of a constant function. (Contributed by Mario Carneiro,
8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
|
| ⊢ (𝐴 ∈ ℂ → (ℂ D (ℂ
× {𝐴})) = (ℂ
× {0})) |
| |
| Theorem | dvid 15015 |
Derivative of the identity function. (Contributed by Mario Carneiro,
8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
|
| ⊢ (ℂ D ( I ↾ ℂ)) = (ℂ
× {1}) |
| |
| Theorem | dvconstre 15016 |
Real derivative of a constant function. (Contributed by Jim Kingdon,
3-Oct-2025.)
|
| ⊢ (𝐴 ∈ ℂ → (ℝ D (ℝ
× {𝐴})) = (ℝ
× {0})) |
| |
| Theorem | dvidre 15017 |
Real derivative of the identity function. (Contributed by Jim Kingdon,
3-Oct-2025.)
|
| ⊢ (ℝ D ( I ↾ ℝ)) = (ℝ
× {1}) |
| |
| Theorem | dvconstss 15018 |
Derivative of a constant function defined on an open set. (Contributed
by Jim Kingdon, 6-Oct-2025.)
|
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ 𝐽 = (𝐾 ↾t 𝑆)
& ⊢ 𝐾 = (MetOpen‘(abs ∘ −
))
& ⊢ (𝜑 → 𝑋 ∈ 𝐽)
& ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0})) |
| |
| Theorem | dvcnp2cntop 15019 |
A function is continuous at each point for which it is differentiable.
(Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario
Carneiro, 28-Dec-2016.)
|
| ⊢ 𝐽 = (𝐾 ↾t 𝐴)
& ⊢ 𝐾 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) |
| |
| Theorem | dvcn 15020 |
A differentiable function is continuous. (Contributed by Mario
Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-Sep-2015.)
|
| ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝐹 ∈ (𝐴–cn→ℂ)) |
| |
| Theorem | dvaddxxbr 15021 |
The sum rule for derivatives at a point. That is, if the derivative
of 𝐹 at 𝐶 is 𝐾 and the
derivative of 𝐺 at 𝐶 is
𝐿, then the derivative of the
pointwise sum of those two
functions at 𝐶 is 𝐾 + 𝐿. (Contributed by Mario Carneiro,
9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
|
| ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆)
& ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐶(𝑆 D 𝐹)𝐾)
& ⊢ (𝜑 → 𝐶(𝑆 D 𝐺)𝐿)
& ⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 + 𝐺))(𝐾 + 𝐿)) |
| |
| Theorem | dvmulxxbr 15022 |
The product rule for derivatives at a point. For the (simpler but
more limited) function version, see dvmulxx 15024. (Contributed by Mario
Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 1-Dec-2023.)
|
| ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆)
& ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐶(𝑆 D 𝐹)𝐾)
& ⊢ (𝜑 → 𝐶(𝑆 D 𝐺)𝐿)
& ⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 · 𝐺))((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶)))) |
| |
| Theorem | dvaddxx 15023 |
The sum rule for derivatives at a point. For the (more general)
relation version, see dvaddxxbr 15021. (Contributed by Mario Carneiro,
9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
|
| ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆)
& ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) ⇒ ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶))) |
| |
| Theorem | dvmulxx 15024 |
The product rule for derivatives at a point. For the (more general)
relation version, see dvmulxxbr 15022. (Contributed by Mario Carneiro,
9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.)
|
| ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆)
& ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) ⇒ ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺‘𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹‘𝐶)))) |
| |
| Theorem | dviaddf 15025 |
The sum rule for everywhere-differentiable functions. (Contributed by
Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro,
10-Feb-2015.)
|
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆)
& ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
& ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) ⇒ ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 + 𝐺)) = ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺))) |
| |
| Theorem | dvimulf 15026 |
The product rule for everywhere-differentiable functions. (Contributed
by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro,
10-Feb-2015.)
|
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆)
& ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
& ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) ⇒ ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 · 𝐺)) = (((𝑆 D 𝐹) ∘𝑓 ·
𝐺)
∘𝑓 + ((𝑆 D 𝐺) ∘𝑓 ·
𝐹))) |
| |
| Theorem | dvcoapbr 15027* |
The chain rule for derivatives at a point. The
𝑢
# 𝐶 → (𝐺‘𝑢) # (𝐺‘𝐶) hypothesis constrains what
functions work for 𝐺. (Contributed by Mario Carneiro,
9-Aug-2014.) (Revised by Jim Kingdon, 21-Dec-2023.)
|
| ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆)
& ⊢ (𝜑 → 𝐺:𝑌⟶𝑋)
& ⊢ (𝜑 → 𝑌 ⊆ 𝑇)
& ⊢ (𝜑 → ∀𝑢 ∈ 𝑌 (𝑢 # 𝐶 → (𝐺‘𝑢) # (𝐺‘𝐶))) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑇 ⊆ ℂ) & ⊢ (𝜑 → (𝐺‘𝐶)(𝑆 D 𝐹)𝐾)
& ⊢ (𝜑 → 𝐶(𝑇 D 𝐺)𝐿)
& ⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ (𝜑 → 𝐶(𝑇 D (𝐹 ∘ 𝐺))(𝐾 · 𝐿)) |
| |
| Theorem | dvcjbr 15028 |
The derivative of the conjugate of a function. For the (simpler but
more limited) function version, see dvcj 15029. (Contributed by Mario
Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
|
| ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ dom (ℝ D 𝐹)) ⇒ ⊢ (𝜑 → 𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D
𝐹)‘𝐶))) |
| |
| Theorem | dvcj 15029 |
The derivative of the conjugate of a function. For the (more general)
relation version, see dvcjbr 15028. (Contributed by Mario Carneiro,
1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
|
| ⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D
(∗ ∘ 𝐹)) =
(∗ ∘ (ℝ D 𝐹))) |
| |
| Theorem | dvfre 15030 |
The derivative of a real function is real. (Contributed by Mario
Carneiro, 1-Sep-2014.)
|
| ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
| |
| Theorem | dvexp 15031* |
Derivative of a power function. (Contributed by Mario Carneiro,
9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
|
| ⊢ (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) |
| |
| Theorem | dvexp2 15032* |
Derivative of an exponential, possibly zero power. (Contributed by
Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro,
10-Feb-2015.)
|
| ⊢ (𝑁 ∈ ℕ0 → (ℂ
D (𝑥 ∈ ℂ
↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
| |
| Theorem | dvrecap 15033* |
Derivative of the reciprocal function. (Contributed by Mario Carneiro,
25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
|
| ⊢ (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2)))) |
| |
| Theorem | dvmptidcn 15034 |
Function-builder for derivative: derivative of the identity.
(Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon,
30-Dec-2023.)
|
| ⊢ (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1) |
| |
| Theorem | dvmptccn 15035* |
Function-builder for derivative: derivative of a constant. (Contributed
by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon,
30-Dec-2023.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 0)) |
| |
| Theorem | dvmptid 15036* |
Function-builder for derivative: derivative of the identity.
(Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario
Carneiro, 11-Feb-2015.)
|
| ⊢ (𝜑 → 𝑆 ∈ {ℝ,
ℂ}) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝑥)) = (𝑥 ∈ 𝑆 ↦ 1)) |
| |
| Theorem | dvmptc 15037* |
Function-builder for derivative: derivative of a constant. (Contributed
by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro,
11-Feb-2015.)
|
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 0)) |
| |
| Theorem | dvmptclx 15038* |
Closure lemma for dvmptmulx 15040 and other related theorems. (Contributed
by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro,
11-Feb-2015.)
|
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
| |
| Theorem | dvmptaddx 15039* |
Function-builder for derivative, addition rule. (Contributed by Mario
Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
|
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊)
& ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐶))) = (𝑥 ∈ 𝑋 ↦ (𝐵 + 𝐷))) |
| |
| Theorem | dvmptmulx 15040* |
Function-builder for derivative, product rule. (Contributed by Mario
Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
|
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊)
& ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))) |
| |
| Theorem | dvmptcmulcn 15041* |
Function-builder for derivative, product rule for constant multiplier.
(Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon,
31-Dec-2023.)
|
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐶 · 𝐴))) = (𝑥 ∈ ℂ ↦ (𝐶 · 𝐵))) |
| |
| Theorem | dvmptnegcn 15042* |
Function-builder for derivative, product rule for negatives.
(Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon,
31-Dec-2023.)
|
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵)) ⇒ ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ -𝐴)) = (𝑥 ∈ ℂ ↦ -𝐵)) |
| |
| Theorem | dvmptsubcn 15043* |
Function-builder for derivative, subtraction rule. (Contributed by
Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon,
31-Dec-2023.)
|
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐷 ∈ 𝑊)
& ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐶)) = (𝑥 ∈ ℂ ↦ 𝐷)) ⇒ ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 − 𝐶))) = (𝑥 ∈ ℂ ↦ (𝐵 − 𝐷))) |
| |
| Theorem | dvmptcjx 15044* |
Function-builder for derivative, conjugate rule. (Contributed by Mario
Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 24-May-2024.)
|
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝑋 ⊆ ℝ)
⇒ ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) |
| |
| Theorem | dvmptfsum 15045* |
Function-builder for derivative, finite sums rule. (Contributed by
Stefan O'Rear, 12-Nov-2014.)
|
| ⊢ 𝐽 = (𝐾 ↾t 𝑆)
& ⊢ 𝐾 =
(TopOpen‘ℂfld) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ 𝐽)
& ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵)) |
| |
| Theorem | dveflem 15046 |
Derivative of the exponential function at 0. The key step in the proof
is eftlub 11872, to show that
abs(exp(𝑥) − 1 − 𝑥) ≤ abs(𝑥)↑2 · (3 / 4).
(Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario
Carneiro, 28-Dec-2016.)
|
| ⊢ 0(ℂ D exp)1 |
| |
| Theorem | dvef 15047 |
Derivative of the exponential function. (Contributed by Mario Carneiro,
9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
|
| ⊢ (ℂ D exp) = exp |
| |
| PART 11 BASIC REAL AND COMPLEX
FUNCTIONS
|
| |
| 11.1 Polynomials
|
| |
| 11.1.1 Elementary properties of complex
polynomials
|
| |
| Syntax | cply 15048 |
Extend class notation to include the set of complex polynomials.
|
| class Poly |
| |
| Syntax | cidp 15049 |
Extend class notation to include the identity polynomial.
|
| class Xp |
| |
| Definition | df-ply 15050* |
Define the set of polynomials on the complex numbers with coefficients
in the given subset. (Contributed by Mario Carneiro, 17-Jul-2014.)
|
| ⊢ Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑥 ∪ {0})
↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
| |
| Definition | df-idp 15051 |
Define the identity polynomial. (Contributed by Mario Carneiro,
17-Jul-2014.)
|
| ⊢ Xp = ( I ↾
ℂ) |
| |
| Theorem | plyval 15052* |
Value of the polynomial set function. (Contributed by Mario Carneiro,
17-Jul-2014.)
|
| ⊢ (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
| |
| Theorem | plybss 15053 |
Reverse closure of the parameter 𝑆 of the polynomial set function.
(Contributed by Mario Carneiro, 22-Jul-2014.)
|
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
| |
| Theorem | elply 15054* |
Definition of a polynomial with coefficients in 𝑆. (Contributed by
Mario Carneiro, 17-Jul-2014.)
|
| ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| |
| Theorem | elply2 15055* |
The coefficient function can be assumed to have zeroes outside
0...𝑛. (Contributed by Mario Carneiro,
20-Jul-2014.) (Revised
by Mario Carneiro, 23-Aug-2014.)
|
| ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| |
| Theorem | plyun0 15056 |
The set of polynomials is unaffected by the addition of zero. (This is
built into the definition because all higher powers of a polynomial are
effectively zero, so we require that the coefficient field contain zero
to simplify some of our closure theorems.) (Contributed by Mario
Carneiro, 17-Jul-2014.)
|
| ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) |
| |
| Theorem | plyf 15057 |
A polynomial is a function on the complex numbers. (Contributed by
Mario Carneiro, 22-Jul-2014.)
|
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
| |
| Theorem | plyss 15058 |
The polynomial set function preserves the subset relation. (Contributed
by Mario Carneiro, 17-Jul-2014.)
|
| ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇)) |
| |
| Theorem | plyssc 15059 |
Every polynomial ring is contained in the ring of polynomials over
ℂ. (Contributed by Mario Carneiro,
22-Jul-2014.)
|
| ⊢ (Poly‘𝑆) ⊆
(Poly‘ℂ) |
| |
| Theorem | elplyr 15060* |
Sufficient condition for elementhood in the set of polynomials.
(Contributed by Mario Carneiro, 17-Jul-2014.) (Revised by Mario
Carneiro, 23-Aug-2014.)
|
| ⊢ ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴:ℕ0⟶𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) |
| |
| Theorem | elplyd 15061* |
Sufficient condition for elementhood in the set of polynomials.
(Contributed by Mario Carneiro, 17-Jul-2014.)
|
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) |
| |
| Theorem | ply1termlem 15062* |
Lemma for ply1term 15063. (Contributed by Mario Carneiro,
26-Jul-2014.)
|
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)))) |
| |
| Theorem | ply1term 15063* |
A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
|
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆)) |
| |
| Theorem | plypow 15064* |
A power is a polynomial. (Contributed by Mario Carneiro,
17-Jul-2014.)
|
| ⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑𝑁)) ∈ (Poly‘𝑆)) |
| |
| Theorem | plyconst 15065 |
A constant function is a polynomial. (Contributed by Mario Carneiro,
17-Jul-2014.)
|
| ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆) → (ℂ × {𝐴}) ∈ (Poly‘𝑆)) |
| |
| Theorem | plyid 15066 |
The identity function is a polynomial. (Contributed by Mario Carneiro,
17-Jul-2014.)
|
| ⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆) → Xp
∈ (Poly‘𝑆)) |
| |
| Theorem | plyaddlem1 15067* |
Derive the coefficient function for the sum of two polynomials.
(Contributed by Mario Carneiro, 23-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))))
& ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘)))) |
| |
| Theorem | plymullem1 15068* |
Derive the coefficient function for the product of two polynomials.
(Contributed by Mario Carneiro, 23-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))))
& ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)))) |
| |
| Theorem | plyaddlem 15069* |
Lemma for plyadd 15071. (Contributed by Mario Carneiro,
21-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))
& ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))
& ⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘𝑆)) |
| |
| Theorem | plymullem 15070* |
Lemma for plymul 15072. (Contributed by Mario Carneiro,
21-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))
& ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))
& ⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)) |
| |
| Theorem | plyadd 15071* |
The sum of two polynomials is a polynomial. (Contributed by Mario
Carneiro, 21-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘𝑆)) |
| |
| Theorem | plymul 15072* |
The product of two polynomials is a polynomial. (Contributed by Mario
Carneiro, 21-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)) |
| |
| Theorem | plysub 15073* |
The difference of two polynomials is a polynomial. (Contributed by
Mario Carneiro, 21-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → -1 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 − 𝐺) ∈ (Poly‘𝑆)) |
| |
| Theorem | plyaddcl 15074 |
The sum of two polynomials is a polynomial. (Contributed by Mario
Carneiro, 24-Jul-2014.)
|
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘𝑓 + 𝐺) ∈
(Poly‘ℂ)) |
| |
| Theorem | plymulcl 15075 |
The product of two polynomials is a polynomial. (Contributed by Mario
Carneiro, 24-Jul-2014.)
|
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘𝑓 · 𝐺) ∈
(Poly‘ℂ)) |
| |
| Theorem | plysubcl 15076 |
The difference of two polynomials is a polynomial. (Contributed by
Mario Carneiro, 24-Jul-2014.)
|
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘𝑓 − 𝐺) ∈
(Poly‘ℂ)) |
| |
| Theorem | plycoeid3 15077* |
Reconstruct a polynomial as an explicit sum of the coefficient function
up to an index no smaller than the degree of the polynomial.
(Contributed by Jim Kingdon, 17-Oct-2025.)
|
| ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝐷 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑧↑𝑘))))
& ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐷)) & ⊢ (𝜑 → 𝑋 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) = Σ𝑗 ∈ (0...𝑀)((𝐴‘𝑗) · (𝑋↑𝑗))) |
| |
| Theorem | plycolemc 15078* |
Lemma for plyco 15079. The result expressed as a sum, with a
degree and
coefficients for 𝐹 specified as hypotheses.
(Contributed by Jim
Kingdon, 20-Sep-2025.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) & ⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)))) ⇒ ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) |
| |
| Theorem | plyco 15079* |
The composition of two polynomials is a polynomial. (Contributed by
Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro,
23-Aug-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ (Poly‘𝑆)) |
| |
| Theorem | plycjlemc 15080* |
Lemma for plycj 15081. (Contributed by Mario Carneiro,
24-Jul-2014.)
(Revised by Jim Kingdon, 22-Sep-2025.)
|
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) |
| |
| Theorem | plycj 15081* |
The double conjugation of a polynomial is a polynomial. (The single
conjugation is not because our definition of polynomial includes only
holomorphic functions, i.e. no dependence on (∗‘𝑧)
independently of 𝑧.) (Contributed by Mario Carneiro,
24-Jul-2014.)
|
| ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆)
& ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
| |
| Theorem | plycn 15082 |
A polynomial is a continuous function. (Contributed by Mario Carneiro,
23-Jul-2014.) Avoid ax-mulf 8019. (Revised by GG, 16-Mar-2025.)
|
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ)) |
| |
| Theorem | plyrecj 15083 |
A polynomial with real coefficients distributes under conjugation.
(Contributed by Mario Carneiro, 24-Jul-2014.)
|
| ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) →
(∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) |
| |
| Theorem | plyreres 15084 |
Real-coefficient polynomials restrict to real functions. (Contributed
by Stefan O'Rear, 16-Nov-2014.)
|
| ⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾
ℝ):ℝ⟶ℝ) |
| |
| Theorem | dvply1 15085* |
Derivative of a polynomial, explicit sum version. (Contributed by
Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro,
11-Feb-2015.)
|
| ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1)))) & ⊢ (𝜑 → 𝑁 ∈
ℕ0) ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = 𝐺) |
| |
| Theorem | dvply2g 15086 |
The derivative of a polynomial with coefficients in a subring is a
polynomial with coefficients in the same ring. (Contributed by Mario
Carneiro, 1-Jan-2017.) (Revised by GG, 30-Apr-2025.)
|
| ⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆)) |
| |
| Theorem | dvply2 15087 |
The derivative of a polynomial is a polynomial. (Contributed by Stefan
O'Rear, 14-Nov-2014.) (Proof shortened by Mario Carneiro,
1-Jan-2017.)
|
| ⊢ (𝐹 ∈ (Poly‘𝑆) → (ℂ D 𝐹) ∈
(Poly‘ℂ)) |
| |
| 11.2 Basic trigonometry
|
| |
| 11.2.1 The exponential, sine, and cosine
functions (cont.)
|
| |
| Theorem | efcn 15088 |
The exponential function is continuous. (Contributed by Paul Chapman,
15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.)
|
| ⊢ exp ∈ (ℂ–cn→ℂ) |
| |
| Theorem | sincn 15089 |
Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.)
(Revised by Mario Carneiro, 3-Sep-2014.)
|
| ⊢ sin ∈ (ℂ–cn→ℂ) |
| |
| Theorem | coscn 15090 |
Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.)
(Revised by Mario Carneiro, 3-Sep-2014.)
|
| ⊢ cos ∈ (ℂ–cn→ℂ) |
| |
| Theorem | reeff1olem 15091* |
Lemma for reeff1o 15093. (Contributed by Paul Chapman,
18-Oct-2007.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ
(exp‘𝑥) = 𝑈) |
| |
| Theorem | reeff1oleme 15092* |
Lemma for reeff1o 15093. (Contributed by Jim Kingdon, 15-May-2024.)
|
| ⊢ (𝑈 ∈ (0(,)e) → ∃𝑥 ∈ ℝ
(exp‘𝑥) = 𝑈) |
| |
| Theorem | reeff1o 15093 |
The real exponential function is one-to-one onto. (Contributed by Paul
Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ |
| |
| Theorem | efltlemlt 15094 |
Lemma for eflt 15095. The converse of efltim 11880 plus the epsilon-delta
setup. (Contributed by Jim Kingdon, 22-May-2024.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (exp‘𝐴) < (exp‘𝐵)) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) < 𝐷 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))
⇒ ⊢ (𝜑 → 𝐴 < 𝐵) |
| |
| Theorem | eflt 15095 |
The exponential function on the reals is strictly increasing.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon,
21-May-2024.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
| |
| Theorem | efle 15096 |
The exponential function on the reals is nondecreasing. (Contributed by
Mario Carneiro, 11-Mar-2014.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (exp‘𝐴) ≤ (exp‘𝐵))) |
| |
| Theorem | reefiso 15097 |
The exponential function on the reals determines an isomorphism from
reals onto positive reals. (Contributed by Steve Rodriguez,
25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.)
|
| ⊢ (exp ↾ ℝ) Isom < , <
(ℝ, ℝ+) |
| |
| Theorem | reapef 15098 |
Apartness and the exponential function for reals. (Contributed by Jim
Kingdon, 11-Jul-2024.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (exp‘𝐴) # (exp‘𝐵))) |
| |
| 11.2.2 Properties of pi =
3.14159...
|
| |
| Theorem | pilem1 15099 |
Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro,
9-May-2014.)
|
| ⊢ (𝐴 ∈ (ℝ+ ∩ (◡sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧
(sin‘𝐴) =
0)) |
| |
| Theorem | cosz12 15100 |
Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and
Jim Kingdon, 7-Mar-2024.)
|
| ⊢ ∃𝑝 ∈ (1(,)2)(cos‘𝑝) = 0 |