Theorem List for Intuitionistic Logic Explorer - 15001-15100 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | mettri2 15001 |
Triangle inequality for the distance function of a metric space.
(Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro,
20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))) |
| |
| Theorem | xmet0 15002 |
The distance function of a metric space is zero if its arguments are
equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by Mario
Carneiro, 20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) |
| |
| Theorem | met0 15003 |
The distance function of a metric space is zero if its arguments are
equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by NM,
30-Aug-2006.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) |
| |
| Theorem | xmetge0 15004 |
The distance function of a metric space is nonnegative. (Contributed by
Mario Carneiro, 20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) |
| |
| Theorem | metge0 15005 |
The distance function of a metric space is nonnegative. (Contributed by
NM, 27-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) |
| |
| Theorem | xmetlecl 15006 |
Real closure of an extended metric value that is upper bounded by a
real. (Contributed by Mario Carneiro, 20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ ℝ ∧ (𝐴𝐷𝐵) ≤ 𝐶)) → (𝐴𝐷𝐵) ∈ ℝ) |
| |
| Theorem | xmetsym 15007 |
The distance function of an extended metric space is symmetric.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) |
| |
| Theorem | xmetpsmet 15008 |
An extended metric is a pseudometric. (Contributed by Thierry Arnoux,
7-Feb-2018.)
|
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋)) |
| |
| Theorem | xmettpos 15009 |
The distance function of an extended metric space is symmetric.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → tpos 𝐷 = 𝐷) |
| |
| Theorem | metsym 15010 |
The distance function of a metric space is symmetric. Definition
14-1.1(c) of [Gleason] p. 223.
(Contributed by NM, 27-Aug-2006.)
(Revised by Mario Carneiro, 20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) |
| |
| Theorem | xmettri 15011 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by Mario
Carneiro, 20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵))) |
| |
| Theorem | mettri 15012 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by NM,
27-Aug-2006.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵))) |
| |
| Theorem | xmettri3 15013 |
Triangle inequality for the distance function of an extended metric.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶))) |
| |
| Theorem | mettri3 15014 |
Triangle inequality for the distance function of a metric space.
(Contributed by NM, 13-Mar-2007.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐵𝐷𝐶))) |
| |
| Theorem | xmetrtri 15015 |
One half of the reverse triangle inequality for the distance function of
an extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐶) +𝑒
-𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵)) |
| |
| Theorem | metrtri 15016 |
Reverse triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon,
21-Apr-2023.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)) |
| |
| Theorem | metn0 15017 |
A metric space is nonempty iff its base set is nonempty. (Contributed
by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
|
| ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅)) |
| |
| Theorem | xmetres2 15018 |
Restriction of an extended metric. (Contributed by Mario Carneiro,
20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅)) |
| |
| Theorem | metreslem 15019 |
Lemma for metres 15022. (Contributed by Mario Carneiro,
24-Aug-2015.)
|
| ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
| |
| Theorem | metres2 15020 |
Lemma for metres 15022. (Contributed by FL, 12-Oct-2006.) (Proof
shortened by Mario Carneiro, 14-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅)) |
| |
| Theorem | xmetres 15021 |
A restriction of an extended metric is an extended metric. (Contributed
by Mario Carneiro, 24-Aug-2015.)
|
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘(𝑋 ∩ 𝑅))) |
| |
| Theorem | metres 15022 |
A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.)
(Revised by Mario Carneiro, 14-Aug-2015.)
|
| ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋 ∩ 𝑅))) |
| |
| Theorem | 0met 15023 |
The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario
Carneiro, 14-Aug-2015.)
|
| ⊢ ∅ ∈
(Met‘∅) |
| |
| 9.2.3 Metric space balls
|
| |
| Theorem | blfvalps 15024* |
The value of the ball function. (Contributed by NM, 30-Aug-2006.)
(Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux,
11-Feb-2018.)
|
| ⊢ (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) |
| |
| Theorem | blfval 15025* |
The value of the ball function. (Contributed by NM, 30-Aug-2006.)
(Revised by Mario Carneiro, 11-Nov-2013.) (Proof shortened by Thierry
Arnoux, 11-Feb-2018.)
|
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) |
| |
| Theorem | blex 15026 |
A ball is a set. Also see blfn 14480 in case you just know 𝐷 is a set,
not 𝐷 ∈ (∞Met‘𝑋). (Contributed by Jim Kingdon,
4-May-2023.)
|
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V) |
| |
| Theorem | blvalps 15027* |
The ball around a point 𝑃 is the set of all points whose
distance
from 𝑃 is less than the ball's radius 𝑅.
(Contributed by NM,
31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) |
| |
| Theorem | blval 15028* |
The ball around a point 𝑃 is the set of all points whose
distance
from 𝑃 is less than the ball's radius 𝑅.
(Contributed by NM,
31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) |
| |
| Theorem | elblps 15029 |
Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by
Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) |
| |
| Theorem | elbl 15030 |
Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by
Mario Carneiro, 11-Nov-2013.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) |
| |
| Theorem | elbl2ps 15031 |
Membership in a ball. (Contributed by NM, 9-Mar-2007.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
| ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷𝐴) < 𝑅)) |
| |
| Theorem | elbl2 15032 |
Membership in a ball. (Contributed by NM, 9-Mar-2007.)
|
| ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷𝐴) < 𝑅)) |
| |
| Theorem | elbl3ps 15033 |
Membership in a ball, with reversed distance function arguments.
(Contributed by NM, 10-Nov-2007.)
|
| ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑃) < 𝑅)) |
| |
| Theorem | elbl3 15034 |
Membership in a ball, with reversed distance function arguments.
(Contributed by NM, 10-Nov-2007.)
|
| ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑃) < 𝑅)) |
| |
| Theorem | blcomps 15035 |
Commute the arguments to the ball function. (Contributed by Mario
Carneiro, 22-Jan-2014.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
| ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝑃 ∈ (𝐴(ball‘𝐷)𝑅))) |
| |
| Theorem | blcom 15036 |
Commute the arguments to the ball function. (Contributed by Mario
Carneiro, 22-Jan-2014.)
|
| ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝑃 ∈ (𝐴(ball‘𝐷)𝑅))) |
| |
| Theorem | xblpnfps 15037 |
The infinity ball in an extended metric is the set of all points that
are a finite distance from the center. (Contributed by Mario Carneiro,
23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ))) |
| |
| Theorem | xblpnf 15038 |
The infinity ball in an extended metric is the set of all points that
are a finite distance from the center. (Contributed by Mario Carneiro,
23-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ))) |
| |
| Theorem | blpnf 15039 |
The infinity ball in a standard metric is just the whole space.
(Contributed by Mario Carneiro, 23-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑃(ball‘𝐷)+∞) = 𝑋) |
| |
| Theorem | bldisj 15040 |
Two balls are disjoint if the center-to-center distance is more than the
sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
|
| ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*
∧ (𝑅
+𝑒 𝑆)
≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) = ∅) |
| |
| Theorem | blgt0 15041 |
A nonempty ball implies that the radius is positive. (Contributed by
NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
| ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 < 𝑅) |
| |
| Theorem | bl2in 15042 |
Two balls are disjoint if they don't overlap. (Contributed by NM,
11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
| ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅) |
| |
| Theorem | xblss2ps 15043 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. In this version of blss2 15046 for
extended metrics, we have to assume the balls are a finite distance
apart, or else 𝑃 will not even be in the infinity
ball around
𝑄. (Contributed by Mario Carneiro,
23-Aug-2015.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
| ⊢ (𝜑 → 𝐷 ∈ (PsMet‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋)
& ⊢ (𝜑 → 𝑄 ∈ 𝑋)
& ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ (𝜑 → 𝑆 ∈ ℝ*) & ⊢ (𝜑 → (𝑃𝐷𝑄) ∈ ℝ) & ⊢ (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒
-𝑒𝑅)) ⇒ ⊢ (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆)) |
| |
| Theorem | xblss2 15044 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. In this version of blss2 15046 for
extended metrics, we have to assume the balls are a finite distance
apart, or else 𝑃 will not even be in the infinity
ball around
𝑄. (Contributed by Mario Carneiro,
23-Aug-2015.)
|
| ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋)
& ⊢ (𝜑 → 𝑄 ∈ 𝑋)
& ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ (𝜑 → 𝑆 ∈ ℝ*) & ⊢ (𝜑 → (𝑃𝐷𝑄) ∈ ℝ) & ⊢ (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒
-𝑒𝑅)) ⇒ ⊢ (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆)) |
| |
| Theorem | blss2ps 15045 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. (Contributed by Mario Carneiro,
15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
| ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆)) |
| |
| Theorem | blss2 15046 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. (Contributed by Mario Carneiro,
15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
| ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆)) |
| |
| Theorem | blhalf 15047 |
A ball of radius 𝑅 / 2 is contained in a ball of radius
𝑅
centered
at any point inside the smaller ball. (Contributed by Jeff Madsen,
2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.)
|
| ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌(ball‘𝑀)(𝑅 / 2)) ⊆ (𝑍(ball‘𝑀)𝑅)) |
| |
| Theorem | blfps 15048 |
Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario
Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
| ⊢ (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷):(𝑋 ×
ℝ*)⟶𝒫 𝑋) |
| |
| Theorem | blf 15049 |
Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario
Carneiro, 23-Aug-2015.)
|
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 ×
ℝ*)⟶𝒫 𝑋) |
| |
| Theorem | blrnps 15050* |
Membership in the range of the ball function. Note that
ran (ball‘𝐷) is the collection of all balls for
metric 𝐷.
(Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro,
12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
| ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐴 ∈ ran (ball‘𝐷) ↔ ∃𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ* 𝐴 = (𝑥(ball‘𝐷)𝑟))) |
| |
| Theorem | blrn 15051* |
Membership in the range of the ball function. Note that
ran (ball‘𝐷) is the collection of all balls for
metric 𝐷.
(Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∈ ran (ball‘𝐷) ↔ ∃𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ* 𝐴 = (𝑥(ball‘𝐷)𝑟))) |
| |
| Theorem | xblcntrps 15052 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 <
𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) |
| |
| Theorem | xblcntr 15053 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 <
𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) |
| |
| Theorem | blcntrps 15054 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) |
| |
| Theorem | blcntr 15055 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) |
| |
| Theorem | xblm 15056* |
A ball is inhabited iff the radius is positive. (Contributed by Mario
Carneiro, 23-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) →
(∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 0 < 𝑅)) |
| |
| Theorem | bln0 15057 |
A ball is not empty. It is also inhabited, as seen at blcntr 15055.
(Contributed by NM, 6-Oct-2007.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ≠ ∅) |
| |
| Theorem | blelrnps 15058 |
A ball belongs to the set of balls of a metric space. (Contributed by
NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ ran (ball‘𝐷)) |
| |
| Theorem | blelrn 15059 |
A ball belongs to the set of balls of a metric space. (Contributed by
NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ ran (ball‘𝐷)) |
| |
| Theorem | blssm 15060 |
A ball is a subset of the base set of a metric space. (Contributed by
NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋) |
| |
| Theorem | unirnblps 15061 |
The union of the set of balls of a metric space is its base set.
(Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
| ⊢ (𝐷 ∈ (PsMet‘𝑋) → ∪ ran
(ball‘𝐷) = 𝑋) |
| |
| Theorem | unirnbl 15062 |
The union of the set of balls of a metric space is its base set.
(Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∪ ran
(ball‘𝐷) = 𝑋) |
| |
| Theorem | blininf 15063 |
The intersection of two balls with the same center is the smaller of
them. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
| ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*))
→ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) = (𝑃(ball‘𝐷)inf({𝑅, 𝑆}, ℝ*, <
))) |
| |
| Theorem | ssblps 15064 |
The size of a ball increases monotonically with its radius.
(Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro,
24-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
| ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*)
∧ 𝑅 ≤ 𝑆) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑃(ball‘𝐷)𝑆)) |
| |
| Theorem | ssbl 15065 |
The size of a ball increases monotonically with its radius.
(Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro,
24-Aug-2015.)
|
| ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*)
∧ 𝑅 ≤ 𝑆) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑃(ball‘𝐷)𝑆)) |
| |
| Theorem | blssps 15066* |
Any point 𝑃 in a ball 𝐵 can be centered in
another ball that is
a subset of 𝐵. (Contributed by NM, 31-Aug-2006.)
(Revised by
Mario Carneiro, 24-Aug-2015.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷) ∧ 𝑃 ∈ 𝐵) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵) |
| |
| Theorem | blss 15067* |
Any point 𝑃 in a ball 𝐵 can be centered in
another ball that is
a subset of 𝐵. (Contributed by NM, 31-Aug-2006.)
(Revised by
Mario Carneiro, 24-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷) ∧ 𝑃 ∈ 𝐵) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵) |
| |
| Theorem | blssexps 15068* |
Two ways to express the existence of a ball subset. (Contributed by NM,
5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
| |
| Theorem | blssex 15069* |
Two ways to express the existence of a ball subset. (Contributed by NM,
5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
| |
| Theorem | ssblex 15070* |
A nested ball exists whose radius is less than any desired amount.
(Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
| ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ ∃𝑥 ∈
ℝ+ (𝑥
< 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆))) |
| |
| Theorem | blin2 15071* |
Given any two balls and a point in their intersection, there is a ball
contained in the intersection with the given center point. (Contributed
by Mario Carneiro, 12-Nov-2013.)
|
| ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵 ∩ 𝐶)) |
| |
| Theorem | blbas 15072 |
The balls of a metric space form a basis for a topology. (Contributed
by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
|
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases) |
| |
| Theorem | blres 15073 |
A ball in a restricted metric space. (Contributed by Mario Carneiro,
5-Jan-2014.)
|
| ⊢ 𝐶 = (𝐷 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋 ∩ 𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑅) = ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌)) |
| |
| Theorem | xmeterval 15074 |
Value of the "finitely separated" relation. (Contributed by Mario
Carneiro, 24-Aug-2015.)
|
| ⊢ ∼ = (◡𝐷 “ ℝ)
⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ))) |
| |
| Theorem | xmeter 15075 |
The "finitely separated" relation is an equivalence relation.
(Contributed by Mario Carneiro, 24-Aug-2015.)
|
| ⊢ ∼ = (◡𝐷 “ ℝ)
⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∼ Er 𝑋) |
| |
| Theorem | xmetec 15076 |
The equivalence classes under the finite separation equivalence relation
are infinity balls. (Contributed by Mario Carneiro, 24-Aug-2015.)
|
| ⊢ ∼ = (◡𝐷 “ ℝ)
⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
| |
| Theorem | blssec 15077 |
A ball centered at 𝑃 is contained in the set of points
finitely
separated from 𝑃. This is just an application of ssbl 15065
to the
infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015.)
|
| ⊢ ∼ = (◡𝐷 “ ℝ)
⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ [𝑃] ∼ ) |
| |
| Theorem | blpnfctr 15078 |
The infinity ball in an extended metric acts like an ultrametric ball in
that every point in the ball is also its center. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)+∞)) |
| |
| Theorem | xmetresbl 15079 |
An extended metric restricted to any ball (in particular the infinity
ball) is a proper metric. Together with xmetec 15076, this shows that any
extended metric space can be "factored" into the disjoint
union of
proper metric spaces, with points in the same region measured by that
region's metric, and points in different regions being distance +∞
from each other. (Contributed by Mario Carneiro, 23-Aug-2015.)
|
| ⊢ 𝐵 = (𝑃(ball‘𝐷)𝑅) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (Met‘𝐵)) |
| |
| 9.2.4 Open sets of a metric space
|
| |
| Theorem | mopnrel 15080 |
The class of open sets of a metric space is a relation. (Contributed by
Jim Kingdon, 5-May-2023.)
|
| ⊢ Rel MetOpen |
| |
| Theorem | mopnval 15081 |
An open set is a subset of a metric space which includes a ball around
each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object
(MetOpen‘𝐷) is the family of all open sets in
the metric space
determined by the metric 𝐷. By mopntop 15083, the open sets of a
metric space form a topology 𝐽, whose base set is ∪ 𝐽 by
mopnuni 15084. (Contributed by NM, 1-Sep-2006.) (Revised
by Mario
Carneiro, 12-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷))) |
| |
| Theorem | mopntopon 15082 |
The set of open sets of a metric space 𝑋 is a topology on 𝑋.
Remark in [Kreyszig] p. 19. This
theorem connects the two concepts and
makes available the theorems for topologies for use with metric spaces.
(Contributed by Mario Carneiro, 24-Aug-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| |
| Theorem | mopntop 15083 |
The set of open sets of a metric space is a topology. (Contributed by
NM, 28-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
| |
| Theorem | mopnuni 15084 |
The union of all open sets in a metric space is its underlying set.
(Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
| |
| Theorem | elmopn 15085* |
The defining property of an open set of a metric space. (Contributed by
NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
| |
| Theorem | mopnfss 15086 |
The family of open sets of a metric space is a collection of subsets of
the base set. (Contributed by NM, 3-Sep-2006.) (Revised by Mario
Carneiro, 12-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ⊆ 𝒫 𝑋) |
| |
| Theorem | mopnm 15087 |
The base set of a metric space is open. Part of Theorem T1 of
[Kreyszig] p. 19. (Contributed by NM,
4-Sep-2006.) (Revised by Mario
Carneiro, 12-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ 𝐽) |
| |
| Theorem | elmopn2 15088* |
A defining property of an open set of a metric space. (Contributed by
NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴))) |
| |
| Theorem | mopnss 15089 |
An open set of a metric space is a subspace of its base set.
(Contributed by NM, 3-Sep-2006.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| |
| Theorem | isxms 15090 |
Express the predicate "〈𝑋, 𝐷〉 is an extended metric
space"
with underlying set 𝑋 and distance function 𝐷.
(Contributed by
Mario Carneiro, 2-Sep-2015.)
|
| ⊢ 𝐽 = (TopOpen‘𝐾)
& ⊢ 𝑋 = (Base‘𝐾)
& ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
| |
| Theorem | isxms2 15091 |
Express the predicate "〈𝑋, 𝐷〉 is an extended metric
space"
with underlying set 𝑋 and distance function 𝐷.
(Contributed by
Mario Carneiro, 2-Sep-2015.)
|
| ⊢ 𝐽 = (TopOpen‘𝐾)
& ⊢ 𝑋 = (Base‘𝐾)
& ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
| |
| Theorem | isms 15092 |
Express the predicate "〈𝑋, 𝐷〉 is a metric space" with
underlying set 𝑋 and distance function 𝐷.
(Contributed by NM,
27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
| ⊢ 𝐽 = (TopOpen‘𝐾)
& ⊢ 𝑋 = (Base‘𝐾)
& ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋))) |
| |
| Theorem | isms2 15093 |
Express the predicate "〈𝑋, 𝐷〉 is a metric space" with
underlying set 𝑋 and distance function 𝐷.
(Contributed by NM,
27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
| ⊢ 𝐽 = (TopOpen‘𝐾)
& ⊢ 𝑋 = (Base‘𝐾)
& ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ MetSp ↔ (𝐷 ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
| |
| Theorem | xmstopn 15094 |
The topology component of an extended metric space coincides with the
topology generated by the metric component. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
| ⊢ 𝐽 = (TopOpen‘𝐾)
& ⊢ 𝑋 = (Base‘𝐾)
& ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) |
| |
| Theorem | mstopn 15095 |
The topology component of a metric space coincides with the topology
generated by the metric component. (Contributed by Mario Carneiro,
26-Aug-2015.)
|
| ⊢ 𝐽 = (TopOpen‘𝐾)
& ⊢ 𝑋 = (Base‘𝐾)
& ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ MetSp → 𝐽 = (MetOpen‘𝐷)) |
| |
| Theorem | xmstps 15096 |
An extended metric space is a topological space. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
| ⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) |
| |
| Theorem | msxms 15097 |
A metric space is an extended metric space. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
| ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
| |
| Theorem | mstps 15098 |
A metric space is a topological space. (Contributed by Mario Carneiro,
26-Aug-2015.)
|
| ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ TopSp) |
| |
| Theorem | xmsxmet 15099 |
The distance function, suitably truncated, is an extended metric on
𝑋. (Contributed by Mario Carneiro,
2-Sep-2015.)
|
| ⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝑀 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋)) |
| |
| Theorem | msmet 15100 |
The distance function, suitably truncated, is a metric on 𝑋.
(Contributed by Mario Carneiro, 12-Nov-2013.)
|
| ⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝑀 ∈ MetSp → 𝐷 ∈ (Met‘𝑋)) |