![]() |
Intuitionistic Logic Explorer Theorem List (p. 151 of 152) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | bj-nnelirr 15001 | A natural number does not belong to itself. Version of elirr 4552 for natural numbers, which does not require ax-setind 4548. (Contributed by BJ, 24-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ω → ¬ 𝐴 ∈ 𝐴) | ||
Theorem | bj-nnen2lp 15002 |
A version of en2lp 4565 for natural numbers, which does not require
ax-setind 4548.
Note: using this theorem and bj-nnelirr 15001, one can remove dependency on ax-setind 4548 from nntri2 6509 and nndcel 6515; one can actually remove more dependencies from these. (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | ||
Theorem | bj-peano4 15003 | Remove from peano4 4608 dependency on ax-setind 4548. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | bj-omtrans 15004 |
The set ω is transitive. A natural number is
included in
ω. Constructive proof of elnn 4617.
The idea is to use bounded induction with the formula 𝑥 ⊆ ω. This formula, in a logic with terms, is bounded. So in our logic without terms, we need to temporarily replace it with 𝑥 ⊆ 𝑎 and then deduce the original claim. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) | ||
Theorem | bj-omtrans2 15005 | The set ω is transitive. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.) |
⊢ Tr ω | ||
Theorem | bj-nnord 15006 | A natural number is an ordinal class. Constructive proof of nnord 4623. Can also be proved from bj-nnelon 15007 if the latter is proved from bj-omssonALT 15011. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ω → Ord 𝐴) | ||
Theorem | bj-nnelon 15007 | A natural number is an ordinal. Constructive proof of nnon 4621. Can also be proved from bj-omssonALT 15011. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | ||
Theorem | bj-omord 15008 | The set ω is an ordinal class. Constructive proof of ordom 4618. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.) |
⊢ Ord ω | ||
Theorem | bj-omelon 15009 | The set ω is an ordinal. Constructive proof of omelon 4620. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.) |
⊢ ω ∈ On | ||
Theorem | bj-omsson 15010 | Constructive proof of omsson 4624. See also bj-omssonALT 15011. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged. |
⊢ ω ⊆ On | ||
Theorem | bj-omssonALT 15011 | Alternate proof of bj-omsson 15010. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ω ⊆ On | ||
Theorem | bj-nn0suc 15012* | Proof of (biconditional form of) nn0suc 4615 from the core axioms of CZF. See also bj-nn0sucALT 15026. As a characterization of the elements of ω, this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | ||
In this section, we add the axiom of set induction to the core axioms of CZF. | ||
In this section, we prove some variants of the axiom of set induction. | ||
Theorem | setindft 15013* | Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.) |
⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑)) | ||
Theorem | setindf 15014* | Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑) | ||
Theorem | setindis 15015* | Axiom of set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 → 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜒 → 𝜑)) ⇒ ⊢ (∀𝑦(∀𝑧 ∈ 𝑦 𝜓 → 𝜒) → ∀𝑥𝜑) | ||
Axiom | ax-bdsetind 15016* | Axiom of bounded set induction. (Contributed by BJ, 28-Nov-2019.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ (∀𝑎(∀𝑦 ∈ 𝑎 [𝑦 / 𝑎]𝜑 → 𝜑) → ∀𝑎𝜑) | ||
Theorem | bdsetindis 15017* | Axiom of bounded set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 → 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜒 → 𝜑)) ⇒ ⊢ (∀𝑦(∀𝑧 ∈ 𝑦 𝜓 → 𝜒) → ∀𝑥𝜑) | ||
Theorem | bj-inf2vnlem1 15018* | Lemma for bj-inf2vn 15022. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → Ind 𝐴) | ||
Theorem | bj-inf2vnlem2 15019* | Lemma for bj-inf2vnlem3 15020 and bj-inf2vnlem4 15021. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑢(∀𝑡 ∈ 𝑢 (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍)))) | ||
Theorem | bj-inf2vnlem3 15020* | Lemma for bj-inf2vn 15022. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐴 & ⊢ BOUNDED 𝑍 ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → 𝐴 ⊆ 𝑍)) | ||
Theorem | bj-inf2vnlem4 15021* | Lemma for bj-inf2vn2 15023. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → 𝐴 ⊆ 𝑍)) | ||
Theorem | bj-inf2vn 15022* | A sufficient condition for ω to be a set. See bj-inf2vn2 15023 for the unbounded version from full set induction. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω)) | ||
Theorem | bj-inf2vn2 15023* | A sufficient condition for ω to be a set; unbounded version of bj-inf2vn 15022. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω)) | ||
Axiom | ax-inf2 15024* | Another axiom of infinity in a constructive setting (see ax-infvn 14989). (Contributed by BJ, 14-Nov-2019.) (New usage is discouraged.) |
⊢ ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) | ||
Theorem | bj-omex2 15025 | Using bounded set induction and the strong axiom of infinity, ω is a set, that is, we recover ax-infvn 14989 (see bj-2inf 14986 for the equivalence of the latter with bj-omex 14990). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ω ∈ V | ||
Theorem | bj-nn0sucALT 15026* | Alternate proof of bj-nn0suc 15012, also constructive but from ax-inf2 15024, hence requiring ax-bdsetind 15016. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | ||
In this section, using the axiom of set induction, we prove full induction on the set of natural numbers. | ||
Theorem | bj-findis 15027* | Principle of induction, using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See bj-bdfindis 14995 for a bounded version not requiring ax-setind 4548. See finds 4611 for a proof in IZF. From this version, it is easy to prove of finds 4611, finds2 4612, finds1 4613. (Contributed by BJ, 22-Dec-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑥𝜃 & ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) ⇒ ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) | ||
Theorem | bj-findisg 15028* | Version of bj-findis 15027 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 15027 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑥𝜃 & ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜏 & ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) ⇒ ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) | ||
Theorem | bj-findes 15029 | Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 15027 for explanations. From this version, it is easy to prove findes 4614. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
⊢ (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑 → [suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑) | ||
In this section, we state the axiom scheme of strong collection, which is part of CZF set theory. | ||
Axiom | ax-strcoll 15030* | Axiom scheme of strong collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. The antecedent means that 𝜑 represents a multivalued function on 𝑎, or equivalently a collection of nonempty classes indexed by 𝑎, and the axiom asserts the existence of a set 𝑏 which "collects" at least one element in the image of each 𝑥 ∈ 𝑎 and which is made only of such elements. That second conjunct is what makes it "strong", compared to the axiom scheme of collection ax-coll 4130. (Contributed by BJ, 5-Oct-2019.) |
⊢ ∀𝑎(∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) | ||
Theorem | strcoll2 15031* | Version of ax-strcoll 15030 with one disjoint variable condition removed and without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.) |
⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) | ||
Theorem | strcollnft 15032* | Closed form of strcollnf 15033. (Contributed by BJ, 21-Oct-2019.) |
⊢ (∀𝑥∀𝑦Ⅎ𝑏𝜑 → (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑))) | ||
Theorem | strcollnf 15033* |
Version of ax-strcoll 15030 with one disjoint variable condition
removed,
the other disjoint variable condition replaced with a nonfreeness
hypothesis, and without initial universal quantifier. Version of
strcoll2 15031 with the disjoint variable condition on
𝑏, 𝜑 replaced
with a nonfreeness hypothesis.
This proof aims to demonstrate a standard technique, but strcoll2 15031 will generally suffice: since the theorem asserts the existence of a set 𝑏, supposing that that setvar does not occur in the already defined 𝜑 is not a big constraint. (Contributed by BJ, 21-Oct-2019.) |
⊢ Ⅎ𝑏𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) | ||
Theorem | strcollnfALT 15034* | Alternate proof of strcollnf 15033, not using strcollnft 15032. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑏𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) | ||
In this section, we state the axiom scheme of subset collection, which is part of CZF set theory. | ||
Axiom | ax-sscoll 15035* | Axiom scheme of subset collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. The antecedent means that 𝜑 represents a multivalued function from 𝑎 to 𝑏, or equivalently a collection of nonempty subsets of 𝑏 indexed by 𝑎, and the consequent asserts the existence of a subset of 𝑐 which "collects" at least one element in the image of each 𝑥 ∈ 𝑎 and which is made only of such elements. The axiom asserts the existence, for any sets 𝑎, 𝑏, of a set 𝑐 such that that implication holds for any value of the parameter 𝑧 of 𝜑. (Contributed by BJ, 5-Oct-2019.) |
⊢ ∀𝑎∀𝑏∃𝑐∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)) | ||
Theorem | sscoll2 15036* | Version of ax-sscoll 15035 with two disjoint variable conditions removed and without initial universal quantifiers. (Contributed by BJ, 5-Oct-2019.) |
⊢ ∃𝑐∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)) | ||
Axiom | ax-ddkcomp 15037 | Axiom of Dedekind completeness for Dedekind real numbers: every inhabited upper-bounded located set of reals has a real upper bound. Ideally, this axiom should be "proved" as "axddkcomp" for the real numbers constructed from IZF, and then Axiom ax-ddkcomp 15037 should be used in place of construction specific results. In particular, axcaucvg 7913 should be proved from it. (Contributed by BJ, 24-Oct-2021.) |
⊢ (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝐵) → 𝑥 ≤ 𝐵))) | ||
Theorem | nnnotnotr 15038 | Double negation of double negation elimination. Suggested by an online post by Martin Escardo. Although this statement resembles nnexmid 851, it can be proved with reference only to implication and negation (that is, without use of disjunction). (Contributed by Jim Kingdon, 21-Oct-2024.) |
⊢ ¬ ¬ (¬ ¬ 𝜑 → 𝜑) | ||
Theorem | 1dom1el 15039 | If a set is dominated by one, then any two of its elements are equal. (Contributed by Jim Kingdon, 23-Apr-2025.) |
⊢ ((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 𝐵 = 𝐶) | ||
Theorem | ss1oel2o 15040 | Any subset of ordinal one being an element of ordinal two is equivalent to excluded middle. A variation of exmid01 4210 which more directly illustrates the contrast with el2oss1o 6458. (Contributed by Jim Kingdon, 8-Aug-2022.) |
⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o)) | ||
Theorem | nnti 15041 | Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.) |
⊢ (𝜑 → 𝐴 ∈ ω) ⇒ ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢))) | ||
Theorem | 012of 15042 | Mapping zero and one between ℕ0 and ω style integers. (Contributed by Jim Kingdon, 28-Jun-2024.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (◡𝐺 ↾ {0, 1}):{0, 1}⟶2o | ||
Theorem | 2o01f 15043 | Mapping zero and one between ω and ℕ0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} | ||
Theorem | pwtrufal 15044 | A subset of the singleton {∅} cannot be anything other than ∅ or {∅}. Removing the double negation would change the meaning, as seen at exmid01 4210. If we view a subset of a singleton as a truth value (as seen in theorems like exmidexmid 4208), then this theorem states there are no truth values other than true and false, as described in section 1.1 of [Bauer], p. 481. (Contributed by Mario Carneiro and Jim Kingdon, 11-Sep-2023.) |
⊢ (𝐴 ⊆ {∅} → ¬ ¬ (𝐴 = ∅ ∨ 𝐴 = {∅})) | ||
Theorem | pwle2 15045* | An exercise related to 𝑁 copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.) |
⊢ 𝑇 = ∪ 𝑥 ∈ 𝑁 ({𝑥} × 1o) ⇒ ⊢ ((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) → 𝑁 ⊆ 2o) | ||
Theorem | pwf1oexmid 15046* | An exercise related to 𝑁 copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.) |
⊢ 𝑇 = ∪ 𝑥 ∈ 𝑁 ({𝑥} × 1o) ⇒ ⊢ ((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) → (ran 𝐺 = 𝒫 1o ↔ (𝑁 = 2o ∧ EXMID))) | ||
Theorem | subctctexmid 15047* | If every subcountable set is countable and Markov's principle holds, excluded middle follows. Proposition 2.6 of [BauerSwan], p. 14:4. The proof is taken from that paper. (Contributed by Jim Kingdon, 29-Nov-2023.) |
⊢ (𝜑 → ∀𝑥(∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝑥) → ∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o))) & ⊢ (𝜑 → ω ∈ Markov) ⇒ ⊢ (𝜑 → EXMID) | ||
Theorem | sssneq 15048* | Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.) |
⊢ (𝐴 ⊆ {𝐵} → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 𝑦 = 𝑧) | ||
Theorem | pw1nct 15049* | A condition which ensures that the powerset of a singleton is not countable. The antecedent here can be referred to as the uniformity principle. Based on Mastodon posts by Andrej Bauer and Rahul Chhabra. (Contributed by Jim Kingdon, 29-May-2024.) |
⊢ (∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → ¬ ∃𝑓 𝑓:ω–onto→(𝒫 1o ⊔ 1o)) | ||
Theorem | 0nninf 15050 | The zero element of ℕ∞ (the constant sequence equal to ∅). (Contributed by Jim Kingdon, 14-Jul-2022.) |
⊢ (ω × {∅}) ∈ ℕ∞ | ||
Theorem | nnsf 15051* | Domain and range of 𝑆. Part of Definition 3.3 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 30-Jul-2022.) |
⊢ 𝑆 = (𝑝 ∈ ℕ∞ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖)))) ⇒ ⊢ 𝑆:ℕ∞⟶ℕ∞ | ||
Theorem | peano4nninf 15052* | The successor function on ℕ∞ is one to one. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 31-Jul-2022.) |
⊢ 𝑆 = (𝑝 ∈ ℕ∞ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖)))) ⇒ ⊢ 𝑆:ℕ∞–1-1→ℕ∞ | ||
Theorem | peano3nninf 15053* | The successor function on ℕ∞ is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.) |
⊢ 𝑆 = (𝑝 ∈ ℕ∞ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖)))) ⇒ ⊢ (𝐴 ∈ ℕ∞ → (𝑆‘𝐴) ≠ (𝑥 ∈ ω ↦ ∅)) | ||
Theorem | nninfalllem1 15054* | Lemma for nninfall 15055. (Contributed by Jim Kingdon, 1-Aug-2022.) |
⊢ (𝜑 → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) & ⊢ (𝜑 → (𝑄‘(𝑥 ∈ ω ↦ 1o)) = 1o) & ⊢ (𝜑 → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = 1o) & ⊢ (𝜑 → 𝑃 ∈ ℕ∞) & ⊢ (𝜑 → (𝑄‘𝑃) = ∅) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ ω (𝑃‘𝑛) = 1o) | ||
Theorem | nninfall 15055* | Given a decidable predicate on ℕ∞, showing it holds for natural numbers and the point at infinity suffices to show it holds everywhere. The sense in which 𝑄 is a decidable predicate is that it assigns a value of either ∅ or 1o (which can be thought of as false and true) to every element of ℕ∞. Lemma 3.5 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.) |
⊢ (𝜑 → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) & ⊢ (𝜑 → (𝑄‘(𝑥 ∈ ω ↦ 1o)) = 1o) & ⊢ (𝜑 → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = 1o) ⇒ ⊢ (𝜑 → ∀𝑝 ∈ ℕ∞ (𝑄‘𝑝) = 1o) | ||
Theorem | nninfsellemdc 15056* | Lemma for nninfself 15059. Showing that the selection function is well defined. (Contributed by Jim Kingdon, 8-Aug-2022.) |
⊢ ((𝑄 ∈ (2o ↑𝑚 ℕ∞) ∧ 𝑁 ∈ ω) → DECID ∀𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o) | ||
Theorem | nninfsellemcl 15057* | Lemma for nninfself 15059. (Contributed by Jim Kingdon, 8-Aug-2022.) |
⊢ ((𝑄 ∈ (2o ↑𝑚 ℕ∞) ∧ 𝑁 ∈ ω) → if(∀𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o) | ||
Theorem | nninfsellemsuc 15058* | Lemma for nninfself 15059. (Contributed by Jim Kingdon, 6-Aug-2022.) |
⊢ ((𝑄 ∈ (2o ↑𝑚 ℕ∞) ∧ 𝐽 ∈ ω) → if(∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅) ⊆ if(∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅)) | ||
Theorem | nninfself 15059* | Domain and range of the selection function for ℕ∞. (Contributed by Jim Kingdon, 6-Aug-2022.) |
⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) ⇒ ⊢ 𝐸:(2o ↑𝑚 ℕ∞)⟶ℕ∞ | ||
Theorem | nninfsellemeq 15060* | Lemma for nninfsel 15063. (Contributed by Jim Kingdon, 9-Aug-2022.) |
⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) & ⊢ (𝜑 → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) & ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = 1o) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → ∀𝑘 ∈ 𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o) & ⊢ (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) = ∅) ⇒ ⊢ (𝜑 → (𝐸‘𝑄) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) | ||
Theorem | nninfsellemqall 15061* | Lemma for nninfsel 15063. (Contributed by Jim Kingdon, 9-Aug-2022.) |
⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) & ⊢ (𝜑 → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) & ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = 1o) & ⊢ (𝜑 → 𝑁 ∈ ω) ⇒ ⊢ (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) = 1o) | ||
Theorem | nninfsellemeqinf 15062* | Lemma for nninfsel 15063. (Contributed by Jim Kingdon, 9-Aug-2022.) |
⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) & ⊢ (𝜑 → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) & ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = 1o) ⇒ ⊢ (𝜑 → (𝐸‘𝑄) = (𝑖 ∈ ω ↦ 1o)) | ||
Theorem | nninfsel 15063* | 𝐸 is a selection function for ℕ∞. Theorem 3.6 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 9-Aug-2022.) |
⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) & ⊢ (𝜑 → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) & ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = 1o) ⇒ ⊢ (𝜑 → ∀𝑝 ∈ ℕ∞ (𝑄‘𝑝) = 1o) | ||
Theorem | nninfomnilem 15064* | Lemma for nninfomni 15065. (Contributed by Jim Kingdon, 10-Aug-2022.) |
⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) ⇒ ⊢ ℕ∞ ∈ Omni | ||
Theorem | nninfomni 15065 | ℕ∞ is omniscient. Corollary 3.7 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 10-Aug-2022.) |
⊢ ℕ∞ ∈ Omni | ||
Theorem | nninffeq 15066* | Equality of two functions on ℕ∞ which agree at every integer and at the point at infinity. From an online post by Martin Escardo. Remark: the last two hypotheses can be grouped into one, ⊢ (𝜑 → ∀𝑛 ∈ suc ω...). (Contributed by Jim Kingdon, 4-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ∞⟶ℕ0) & ⊢ (𝜑 → 𝐺:ℕ∞⟶ℕ0) & ⊢ (𝜑 → (𝐹‘(𝑥 ∈ ω ↦ 1o)) = (𝐺‘(𝑥 ∈ ω ↦ 1o))) & ⊢ (𝜑 → ∀𝑛 ∈ ω (𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
Theorem | exmidsbthrlem 15067* | Lemma for exmidsbthr 15068. (Contributed by Jim Kingdon, 11-Aug-2022.) |
⊢ 𝑆 = (𝑝 ∈ ℕ∞ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖)))) ⇒ ⊢ (∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → EXMID) | ||
Theorem | exmidsbthr 15068* | The Schroeder-Bernstein Theorem implies excluded middle. Theorem 1 of [PradicBrown2022], p. 1. (Contributed by Jim Kingdon, 11-Aug-2022.) |
⊢ (∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → EXMID) | ||
Theorem | exmidsbth 15069* |
The Schroeder-Bernstein Theorem is equivalent to excluded middle. This
is Metamath 100 proof #25. The forward direction (isbth 6980) is the
proof of the Schroeder-Bernstein Theorem from the Metamath Proof
Explorer database (in which excluded middle holds), but adapted to use
EXMID as an antecedent rather
than being unconditionally true, as in
the non-intuitionistic proof at
https://us.metamath.org/mpeuni/sbth.html 6980.
The reverse direction (exmidsbthr 15068) is the one which establishes that Schroeder-Bernstein implies excluded middle. This resolves the question of whether we will be able to prove Schroeder-Bernstein from our axioms in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.) |
⊢ (EXMID ↔ ∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦)) | ||
Theorem | sbthomlem 15070 | Lemma for sbthom 15071. (Contributed by Mario Carneiro and Jim Kingdon, 13-Jul-2023.) |
⊢ (𝜑 → ω ∈ Omni) & ⊢ (𝜑 → 𝑌 ⊆ {∅}) & ⊢ (𝜑 → 𝐹:ω–1-1-onto→(𝑌 ⊔ ω)) ⇒ ⊢ (𝜑 → (𝑌 = ∅ ∨ 𝑌 = {∅})) | ||
Theorem | sbthom 15071 | Schroeder-Bernstein is not possible even for ω. We know by exmidsbth 15069 that full Schroeder-Bernstein will not be provable but what about the case where one of the sets is ω? That case plus the Limited Principle of Omniscience (LPO) implies excluded middle, so we will not be able to prove it. (Contributed by Mario Carneiro and Jim Kingdon, 10-Jul-2023.) |
⊢ ((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) → EXMID) | ||
Theorem | qdencn 15072* | The set of complex numbers whose real and imaginary parts are rational is dense in the complex plane. This is a two dimensional analogue to qdenre 11225 (and also would hold for ℝ × ℝ with the usual metric; this is not about complex numbers in particular). (Contributed by Jim Kingdon, 18-Oct-2021.) |
⊢ 𝑄 = {𝑧 ∈ ℂ ∣ ((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ)} ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ 𝑄 (abs‘(𝑥 − 𝐴)) < 𝐵) | ||
Theorem | refeq 15073* | Equality of two real functions which agree at negative numbers, positive numbers, and zero. This holds even without real trichotomy. From an online post by Martin Escardo. (Contributed by Jim Kingdon, 9-Jul-2023.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐺:ℝ⟶ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑥 < 0 → (𝐹‘𝑥) = (𝐺‘𝑥))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (0 < 𝑥 → (𝐹‘𝑥) = (𝐺‘𝑥))) & ⊢ (𝜑 → (𝐹‘0) = (𝐺‘0)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
Theorem | triap 15074 | Two ways of stating real number trichotomy. (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) ↔ DECID 𝐴 # 𝐵)) | ||
Theorem | isomninnlem 15075* | Lemma for isomninn 15076. The result, with a hypothesis to provide a convenient notation. (Contributed by Jim Kingdon, 30-Aug-2023.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1))) | ||
Theorem | isomninn 15076* | Omniscience stated in terms of natural numbers. Similar to isomnimap 7149 but it will sometimes be more convenient to use 0 and 1 rather than ∅ and 1o. (Contributed by Jim Kingdon, 30-Aug-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1))) | ||
Theorem | cvgcmp2nlemabs 15077* | Lemma for cvgcmp2n 15078. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting (seq1( + , 𝐺)‘𝑁) as the sum of (seq1( + , 𝐺)‘𝑀) and a term which gets smaller as 𝑀 gets large. (Contributed by Jim Kingdon, 25-Aug-2023.) |
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀)) | ||
Theorem | cvgcmp2n 15078* | A comparison test for convergence of a real infinite series. (Contributed by Jim Kingdon, 25-Aug-2023.) |
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) ⇒ ⊢ (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ ) | ||
Theorem | iooref1o 15079 | A one-to-one mapping from the real numbers onto the open unit interval. (Contributed by Jim Kingdon, 27-Jun-2024.) |
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (1 / (1 + (exp‘𝑥)))) ⇒ ⊢ 𝐹:ℝ–1-1-onto→(0(,)1) | ||
Theorem | iooreen 15080 | An open interval is equinumerous to the real numbers. (Contributed by Jim Kingdon, 27-Jun-2024.) |
⊢ (0(,)1) ≈ ℝ | ||
Omniscience principles refer to several propositions, most of them weaker than full excluded middle, which do not follow from the axioms of IZF set theory. They are: (0) the Principle of Omniscience (PO), which is another name for excluded middle (see exmidomni 7154), (1) the Limited Principle of Omniscience (LPO) is ω ∈ Omni (see df-omni 7147), (2) the Weak Limited Principle of Omniscience (WLPO) is ω ∈ WOmni (see df-womni 7176), (3) Markov's Principle (MP) is ω ∈ Markov (see df-markov 7164), (4) the Lesser Limited Principle of Omniscience (LLPO) is not yet defined in iset.mm. They also have analytic counterparts each of which follows from the corresponding omniscience principle: (1) Analytic LPO is real number trichotomy, ∀𝑥 ∈ ℝ∀𝑦 ∈ ℝ(𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) (see trilpo 15088), (2) Analytic WLPO is decidability of real number equality, ∀𝑥 ∈ ℝ∀𝑦 ∈ ℝDECID 𝑥 = 𝑦 (see redcwlpo 15100), (3) Analytic MP is ∀𝑥 ∈ ℝ∀𝑦 ∈ ℝ(𝑥 ≠ 𝑦 → 𝑥 # 𝑦) (see neapmkv 15113), (4) Analytic LLPO is real number dichotomy, ∀𝑥 ∈ ℝ∀𝑦 ∈ ℝ(𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) (most relevant current theorem is maxclpr 11245). | ||
Theorem | trilpolemclim 15081* | Lemma for trilpo 15088. Convergence of the series. (Contributed by Jim Kingdon, 24-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛))) ⇒ ⊢ (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ ) | ||
Theorem | trilpolemcl 15082* | Lemma for trilpo 15088. The sum exists. (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | trilpolemisumle 15083* | Lemma for trilpo 15088. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℕ) ⇒ ⊢ (𝜑 → Σ𝑖 ∈ 𝑍 ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ≤ Σ𝑖 ∈ 𝑍 (1 / (2↑𝑖))) | ||
Theorem | trilpolemgt1 15084* | Lemma for trilpo 15088. The 1 < 𝐴 case. (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ⇒ ⊢ (𝜑 → ¬ 1 < 𝐴) | ||
Theorem | trilpolemeq1 15085* | Lemma for trilpo 15088. The 𝐴 = 1 case. This is proved by noting that if any (𝐹‘𝑥) is zero, then the infinite sum 𝐴 is less than one based on the term which is zero. We are using the fact that the 𝐹 sequence is decidable (in the sense that each element is either zero or one). (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ (𝜑 → 𝐴 = 1) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) | ||
Theorem | trilpolemlt1 15086* | Lemma for trilpo 15088. The 𝐴 < 1 case. We can use the distance between 𝐴 and one (that is, 1 − 𝐴) to find a position in the sequence 𝑛 where terms after that point will not add up to as much as 1 − 𝐴. By finomni 7152 we know the terms up to 𝑛 either contain a zero or are all one. But if they are all one that contradicts the way we constructed 𝑛, so we know that the sequence contains a zero. (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0) | ||
Theorem | trilpolemres 15087* | Lemma for trilpo 15088. The result. (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ (𝜑 → (𝐴 < 1 ∨ 𝐴 = 1 ∨ 1 < 𝐴)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0 ∨ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1)) | ||
Theorem | trilpo 15088* |
Real number trichotomy implies the Limited Principle of Omniscience
(LPO). We expect that we'd need some form of countable choice to prove
the converse.
Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence contains a zero or it is all ones. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. Compare it with one using trichotomy. The three cases from trichotomy are trilpolemlt1 15086 (which means the sequence contains a zero), trilpolemeq1 15085 (which means the sequence is all ones), and trilpolemgt1 15084 (which is not possible). Equivalent ways to state real number trichotomy (sometimes called "analytic LPO") include decidability of real number apartness (see triap 15074) or that the real numbers are a discrete field (see trirec0 15089). LPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qtri3or 10257 for real numbers. (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ω ∈ Omni) | ||
Theorem | trirec0 15089* |
Every real number having a reciprocal or equaling zero is equivalent to
real number trichotomy.
This is the key part of the definition of what is known as a discrete field, so "the real numbers are a discrete field" can be taken as an equivalent way to state real trichotomy (see further discussion at trilpo 15088). (Contributed by Jim Kingdon, 10-Jun-2024.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0)) | ||
Theorem | trirec0xor 15090* |
Version of trirec0 15089 with exclusive-or.
The definition of a discrete field is sometimes stated in terms of exclusive-or but as proved here, this is equivalent to inclusive-or because the two disjuncts cannot be simultaneously true. (Contributed by Jim Kingdon, 10-Jun-2024.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0)) | ||
Theorem | apdifflemf 15091 | Lemma for apdiff 15093. Being apart from the point halfway between 𝑄 and 𝑅 suffices for 𝐴 to be a different distance from 𝑄 and from 𝑅. (Contributed by Jim Kingdon, 18-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑄 ∈ ℚ) & ⊢ (𝜑 → 𝑅 ∈ ℚ) & ⊢ (𝜑 → 𝑄 < 𝑅) & ⊢ (𝜑 → ((𝑄 + 𝑅) / 2) # 𝐴) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) # (abs‘(𝐴 − 𝑅))) | ||
Theorem | apdifflemr 15092 | Lemma for apdiff 15093. (Contributed by Jim Kingdon, 19-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑆 ∈ ℚ) & ⊢ (𝜑 → (abs‘(𝐴 − -1)) # (abs‘(𝐴 − 1))) & ⊢ ((𝜑 ∧ 𝑆 ≠ 0) → (abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆)))) ⇒ ⊢ (𝜑 → 𝐴 # 𝑆) | ||
Theorem | apdiff 15093* | The irrationals (reals apart from any rational) are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 17-May-2024.) |
⊢ (𝐴 ∈ ℝ → (∀𝑞 ∈ ℚ 𝐴 # 𝑞 ↔ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞 ≠ 𝑟 → (abs‘(𝐴 − 𝑞)) # (abs‘(𝐴 − 𝑟))))) | ||
Theorem | iswomninnlem 15094* | Lemma for iswomnimap 7178. The result, with a hypothesis for convenience. (Contributed by Jim Kingdon, 20-Jun-2024.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) | ||
Theorem | iswomninn 15095* | Weak omniscience stated in terms of natural numbers. Similar to iswomnimap 7178 but it will sometimes be more convenient to use 0 and 1 rather than ∅ and 1o. (Contributed by Jim Kingdon, 20-Jun-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) | ||
Theorem | iswomni0 15096* | Weak omniscience stated in terms of equality with 0. Like iswomninn 15095 but with zero in place of one. (Contributed by Jim Kingdon, 24-Jul-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0)) | ||
Theorem | ismkvnnlem 15097* | Lemma for ismkvnn 15098. The result, with a hypothesis to give a name to an expression for convenience. (Contributed by Jim Kingdon, 25-Jun-2024.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1 → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0))) | ||
Theorem | ismkvnn 15098* | The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 25-Jun-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1 → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0))) | ||
Theorem | redcwlpolemeq1 15099* | Lemma for redcwlpo 15100. A biconditionalized version of trilpolemeq1 15085. (Contributed by Jim Kingdon, 21-Jun-2024.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ⇒ ⊢ (𝜑 → (𝐴 = 1 ↔ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1)) | ||
Theorem | redcwlpo 15100* |
Decidability of real number equality implies the Weak Limited Principle
of Omniscience (WLPO). We expect that we'd need some form of countable
choice to prove the converse.
Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence is all ones or it is not. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. This real number will equal one if and only if the sequence is all ones (redcwlpolemeq1 15099). Therefore decidability of real number equality would imply decidability of whether the sequence is all ones. Because of this theorem, decidability of real number equality is sometimes called "analytic WLPO". WLPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qdceq 10261 for real numbers. (Contributed by Jim Kingdon, 20-Jun-2024.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ω ∈ WOmni) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |