![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-axempty2 | GIF version |
Description: Axiom of the empty set from bounded separation, alternate version to bj-axempty 11784. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 3965 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-axempty2 | ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-axemptylem 11783 | . 2 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) | |
2 | dfnot 1307 | . . . 4 ⊢ (¬ 𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 → ⊥)) | |
3 | 2 | albii 1404 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 → ⊥)) |
4 | 3 | exbii 1541 | . 2 ⊢ (∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥)) |
5 | 1, 4 | mpbir 144 | 1 ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1287 ⊥wfal 1294 ∃wex 1426 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-ial 1472 ax-bd0 11704 ax-bdim 11705 ax-bdn 11708 ax-bdeq 11711 ax-bdsep 11775 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-fal 1295 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |