![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-axempty2 | GIF version |
Description: Axiom of the empty set from bounded separation, alternate version to bj-axempty 14648. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4130 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-axempty2 | ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-axemptylem 14647 | . 2 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) | |
2 | dfnot 1371 | . . . 4 ⊢ (¬ 𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 → ⊥)) | |
3 | 2 | albii 1470 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 → ⊥)) |
4 | 3 | exbii 1605 | . 2 ⊢ (∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥)) |
5 | 1, 4 | mpbir 146 | 1 ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1351 ⊥wfal 1358 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-ial 1534 ax-bd0 14568 ax-bdim 14569 ax-bdn 14572 ax-bdeq 14575 ax-bdsep 14639 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |