Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-axempty2 | GIF version |
Description: Axiom of the empty set from bounded separation, alternate version to bj-axempty 13775. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4108 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-axempty2 | ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-axemptylem 13774 | . 2 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) | |
2 | dfnot 1361 | . . . 4 ⊢ (¬ 𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 → ⊥)) | |
3 | 2 | albii 1458 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 → ⊥)) |
4 | 3 | exbii 1593 | . 2 ⊢ (∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥)) |
5 | 1, 4 | mpbir 145 | 1 ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1341 ⊥wfal 1348 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 ax-bd0 13695 ax-bdim 13696 ax-bdn 13699 ax-bdeq 13702 ax-bdsep 13766 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |