Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axempty2 GIF version

Theorem bj-axempty2 16187
Description: Axiom of the empty set from bounded separation, alternate version to bj-axempty 16186. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4209 instead. (New usage is discouraged.)
Assertion
Ref Expression
bj-axempty2 𝑥𝑦 ¬ 𝑦𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-axempty2
StepHypRef Expression
1 bj-axemptylem 16185 . 2 𝑥𝑦(𝑦𝑥 → ⊥)
2 dfnot 1413 . . . 4 𝑦𝑥 ↔ (𝑦𝑥 → ⊥))
32albii 1516 . . 3 (∀𝑦 ¬ 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥 → ⊥))
43exbii 1651 . 2 (∃𝑥𝑦 ¬ 𝑦𝑥 ↔ ∃𝑥𝑦(𝑦𝑥 → ⊥))
51, 4mpbir 146 1 𝑥𝑦 ¬ 𝑦𝑥
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1393  wfal 1400  wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-ial 1580  ax-bd0 16106  ax-bdim 16107  ax-bdn 16110  ax-bdeq 16113  ax-bdsep 16177
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator