| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-axempty2 | GIF version | ||
| Description: Axiom of the empty set from bounded separation, alternate version to bj-axempty 16186. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4209 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-axempty2 | ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-axemptylem 16185 | . 2 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) | |
| 2 | dfnot 1413 | . . . 4 ⊢ (¬ 𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 → ⊥)) | |
| 3 | 2 | albii 1516 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 → ⊥)) |
| 4 | 3 | exbii 1651 | . 2 ⊢ (∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥)) |
| 5 | 1, 4 | mpbir 146 | 1 ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1393 ⊥wfal 1400 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 ax-bd0 16106 ax-bdim 16107 ax-bdn 16110 ax-bdeq 16113 ax-bdsep 16177 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |