ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvraldva2 GIF version

Theorem cbvraldva2 2772
Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
cbvraldva2.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
cbvraldva2.2 ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)
Assertion
Ref Expression
cbvraldva2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒))
Distinct variable groups:   𝑦,𝐴   𝜓,𝑦   𝑥,𝐵   𝜒,𝑥   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem cbvraldva2
StepHypRef Expression
1 simpr 110 . . . . 5 ((𝜑𝑥 = 𝑦) → 𝑥 = 𝑦)
2 cbvraldva2.2 . . . . 5 ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)
31, 2eleq12d 2300 . . . 4 ((𝜑𝑥 = 𝑦) → (𝑥𝐴𝑦𝐵))
4 cbvraldva2.1 . . . 4 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
53, 4imbi12d 234 . . 3 ((𝜑𝑥 = 𝑦) → ((𝑥𝐴𝜓) ↔ (𝑦𝐵𝜒)))
65cbvaldva 1975 . 2 (𝜑 → (∀𝑥(𝑥𝐴𝜓) ↔ ∀𝑦(𝑦𝐵𝜒)))
7 df-ral 2513 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
8 df-ral 2513 . 2 (∀𝑦𝐵 𝜒 ↔ ∀𝑦(𝑦𝐵𝜒))
96, 7, 83bitr4g 223 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393   = wceq 1395  wcel 2200  wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-cleq 2222  df-clel 2225  df-ral 2513
This theorem is referenced by:  cbvraldva  2774  acexmid  5993  tfrlem3ag  6445  tfrlem3a  6446  tfrlemi1  6468  tfr1onlem3ag  6473
  Copyright terms: Public domain W3C validator