![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvrexdva2 | GIF version |
Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
cbvraldva2.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
cbvraldva2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
cbvrexdva2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) | |
2 | cbvraldva2.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) | |
3 | 1, 2 | eleq12d 2185 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
4 | cbvraldva2.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
5 | 3, 4 | anbi12d 462 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑦 ∈ 𝐵 ∧ 𝜒))) |
6 | 5 | cbvexdva 1879 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜒))) |
7 | df-rex 2396 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
8 | df-rex 2396 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜒 ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜒)) | |
9 | 6, 7, 8 | 3bitr4g 222 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1314 ∃wex 1451 ∈ wcel 1463 ∃wrex 2391 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-nf 1420 df-cleq 2108 df-clel 2111 df-rex 2396 |
This theorem is referenced by: cbvrexdva 2635 acexmid 5727 |
Copyright terms: Public domain | W3C validator |