ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrex2vw GIF version

Theorem cbvrex2vw 2708
Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 2710 with a disjoint variable condition, which does not require ax-13 2143. (Contributed by FL, 2-Jul-2012.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvrex2vw.1 (𝑥 = 𝑧 → (𝜑𝜒))
cbvrex2vw.2 (𝑦 = 𝑤 → (𝜒𝜓))
Assertion
Ref Expression
cbvrex2vw (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑧𝐴𝑤𝐵 𝜓)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑤   𝑥,𝐴,𝑧   𝑤,𝐵   𝑥,𝐵,𝑦,𝑧   𝜒,𝑤   𝜒,𝑥   𝜑,𝑧   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤)   𝜓(𝑥,𝑧,𝑤)   𝜒(𝑦,𝑧)   𝐴(𝑦,𝑤)

Proof of Theorem cbvrex2vw
StepHypRef Expression
1 cbvrex2vw.1 . . . 4 (𝑥 = 𝑧 → (𝜑𝜒))
21rexbidv 2471 . . 3 (𝑥 = 𝑧 → (∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 𝜒))
32cbvrexvw 2701 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑧𝐴𝑦𝐵 𝜒)
4 cbvrex2vw.2 . . . 4 (𝑦 = 𝑤 → (𝜒𝜓))
54cbvrexvw 2701 . . 3 (∃𝑦𝐵 𝜒 ↔ ∃𝑤𝐵 𝜓)
65rexbii 2477 . 2 (∃𝑧𝐴𝑦𝐵 𝜒 ↔ ∃𝑧𝐴𝑤𝐵 𝜓)
73, 6bitri 183 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑧𝐴𝑤𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-clel 2166  df-rex 2454
This theorem is referenced by:  4sqlem2  12341  2sqlem9  13754
  Copyright terms: Public domain W3C validator