| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvrexvw | GIF version | ||
| Description: Version of cbvrexv 2730 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| cbvralvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbvrexvw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1w 2257 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 2 | cbvralvw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) | 
| 4 | 3 | cbvexvw 1935 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | 
| 5 | df-rex 2481 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | df-rex 2481 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜓 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 7 | 4, 5, 6 | 3bitr4i 212 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1506 ∈ wcel 2167 ∃wrex 2476 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-clel 2192 df-rex 2481 | 
| This theorem is referenced by: cbvrex2vw 2741 zsupssdc 10328 prodmodclem2 11742 prodmodc 11743 pceu 12464 4sqlem12 12571 nninfdclemcl 12665 grprida 13030 dfgrp2 13159 dfgrp3mlem 13230 lss1d 13939 2lgslem1b 15330 bj-charfunbi 15457 | 
| Copyright terms: Public domain | W3C validator |