ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrexvw GIF version

Theorem cbvrexvw 2701
Description: Version of cbvrexv 2697 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.)
Hypothesis
Ref Expression
cbvralvw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrexvw (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvrexvw
StepHypRef Expression
1 eleq1w 2231 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
2 cbvralvw.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2anbi12d 470 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
43cbvexvw 1913 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑦(𝑦𝐴𝜓))
5 df-rex 2454 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
6 df-rex 2454 . 2 (∃𝑦𝐴 𝜓 ↔ ∃𝑦(𝑦𝐴𝜓))
74, 5, 63bitr4i 211 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wex 1485  wcel 2141  wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-clel 2166  df-rex 2454
This theorem is referenced by:  cbvrex2vw  2708  prodmodclem2  11540  prodmodc  11541  zsupssdc  11909  pceu  12249  grpridd  12641  dfgrp2  12732  bj-charfunbi  13846
  Copyright terms: Public domain W3C validator