ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem9 GIF version

Theorem 2sqlem9 15365
Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2sqlem9.5 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
2sqlem9.7 (𝜑𝑀𝑁)
2sqlem9.6 (𝜑𝑀 ∈ ℕ)
2sqlem9.4 (𝜑𝑁𝑌)
Assertion
Ref Expression
2sqlem9 (𝜑𝑀𝑆)
Distinct variable groups:   𝑎,𝑏,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦   𝑀,𝑎,𝑏,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑥,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑌,𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑎,𝑏)   𝑆(𝑤)   𝑀(𝑤)   𝑁(𝑤,𝑎,𝑏)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem9
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem9.4 . . 3 (𝜑𝑁𝑌)
2 eqeq1 2203 . . . . . . . 8 (𝑧 = 𝑁 → (𝑧 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝑁 = ((𝑥↑2) + (𝑦↑2))))
32anbi2d 464 . . . . . . 7 (𝑧 = 𝑁 → (((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝑥 gcd 𝑦) = 1 ∧ 𝑁 = ((𝑥↑2) + (𝑦↑2)))))
432rexbidv 2522 . . . . . 6 (𝑧 = 𝑁 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑁 = ((𝑥↑2) + (𝑦↑2)))))
5 oveq1 5929 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 gcd 𝑦) = (𝑢 gcd 𝑦))
65eqeq1d 2205 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥 gcd 𝑦) = 1 ↔ (𝑢 gcd 𝑦) = 1))
7 oveq1 5929 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝑥↑2) = (𝑢↑2))
87oveq1d 5937 . . . . . . . . 9 (𝑥 = 𝑢 → ((𝑥↑2) + (𝑦↑2)) = ((𝑢↑2) + (𝑦↑2)))
98eqeq2d 2208 . . . . . . . 8 (𝑥 = 𝑢 → (𝑁 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝑁 = ((𝑢↑2) + (𝑦↑2))))
106, 9anbi12d 473 . . . . . . 7 (𝑥 = 𝑢 → (((𝑥 gcd 𝑦) = 1 ∧ 𝑁 = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝑢 gcd 𝑦) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑦↑2)))))
11 oveq2 5930 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑢 gcd 𝑦) = (𝑢 gcd 𝑣))
1211eqeq1d 2205 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑢 gcd 𝑦) = 1 ↔ (𝑢 gcd 𝑣) = 1))
13 oveq1 5929 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝑦↑2) = (𝑣↑2))
1413oveq2d 5938 . . . . . . . . 9 (𝑦 = 𝑣 → ((𝑢↑2) + (𝑦↑2)) = ((𝑢↑2) + (𝑣↑2)))
1514eqeq2d 2208 . . . . . . . 8 (𝑦 = 𝑣 → (𝑁 = ((𝑢↑2) + (𝑦↑2)) ↔ 𝑁 = ((𝑢↑2) + (𝑣↑2))))
1612, 15anbi12d 473 . . . . . . 7 (𝑦 = 𝑣 → (((𝑢 gcd 𝑦) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑦↑2))) ↔ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))))
1710, 16cbvrex2vw 2741 . . . . . 6 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑁 = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))))
184, 17bitrdi 196 . . . . 5 (𝑧 = 𝑁 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))))
19 2sqlem7.2 . . . . 5 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2018, 19elab2g 2911 . . . 4 (𝑁𝑌 → (𝑁𝑌 ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))))
2120ibi 176 . . 3 (𝑁𝑌 → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))))
221, 21syl 14 . 2 (𝜑 → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))))
23 simpr 110 . . . . . 6 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))) ∧ 𝑀 = 1) → 𝑀 = 1)
24 1z 9352 . . . . . . . . 9 1 ∈ ℤ
25 zgz 12542 . . . . . . . . 9 (1 ∈ ℤ → 1 ∈ ℤ[i])
2624, 25ax-mp 5 . . . . . . . 8 1 ∈ ℤ[i]
27 sq1 10725 . . . . . . . . 9 (1↑2) = 1
2827eqcomi 2200 . . . . . . . 8 1 = (1↑2)
29 fveq2 5558 . . . . . . . . . . 11 (𝑥 = 1 → (abs‘𝑥) = (abs‘1))
30 abs1 11237 . . . . . . . . . . 11 (abs‘1) = 1
3129, 30eqtrdi 2245 . . . . . . . . . 10 (𝑥 = 1 → (abs‘𝑥) = 1)
3231oveq1d 5937 . . . . . . . . 9 (𝑥 = 1 → ((abs‘𝑥)↑2) = (1↑2))
3332rspceeqv 2886 . . . . . . . 8 ((1 ∈ ℤ[i] ∧ 1 = (1↑2)) → ∃𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2))
3426, 28, 33mp2an 426 . . . . . . 7 𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2)
35 2sq.1 . . . . . . . 8 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
36352sqlem1 15355 . . . . . . 7 (1 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2))
3734, 36mpbir 146 . . . . . 6 1 ∈ 𝑆
3823, 37eqeltrdi 2287 . . . . 5 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))) ∧ 𝑀 = 1) → 𝑀𝑆)
39 2sqlem9.5 . . . . . . . 8 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
4039ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
41 2sqlem9.7 . . . . . . . 8 (𝜑𝑀𝑁)
4241ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑀𝑁)
4335, 192sqlem7 15362 . . . . . . . . . 10 𝑌 ⊆ (𝑆 ∩ ℕ)
44 inss2 3384 . . . . . . . . . 10 (𝑆 ∩ ℕ) ⊆ ℕ
4543, 44sstri 3192 . . . . . . . . 9 𝑌 ⊆ ℕ
4645, 1sselid 3181 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
4746ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑁 ∈ ℕ)
48 2sqlem9.6 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
4948ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑀 ∈ ℕ)
50 simprr 531 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑀 ≠ 1)
51 eluz2b3 9678 . . . . . . . 8 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
5249, 50, 51sylanbrc 417 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑀 ∈ (ℤ‘2))
53 simplrl 535 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑢 ∈ ℤ)
54 simplrr 536 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑣 ∈ ℤ)
55 simprll 537 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → (𝑢 gcd 𝑣) = 1)
56 simprlr 538 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑁 = ((𝑢↑2) + (𝑣↑2)))
57 eqid 2196 . . . . . . 7 (((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
58 eqid 2196 . . . . . . 7 (((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
59 eqid 2196 . . . . . . 7 ((((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) / ((((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) gcd (((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)))) = ((((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) / ((((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) gcd (((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))))
60 eqid 2196 . . . . . . 7 ((((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) / ((((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) gcd (((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)))) = ((((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) / ((((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) gcd (((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))))
6135, 19, 40, 42, 47, 52, 53, 54, 55, 56, 57, 58, 59, 602sqlem8 15364 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑀𝑆)
6261anassrs 400 . . . . 5 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))) ∧ 𝑀 ≠ 1) → 𝑀𝑆)
6348nnzd 9447 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
6463ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))) → 𝑀 ∈ ℤ)
65 zdceq 9401 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑀 = 1)
6664, 24, 65sylancl 413 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))) → DECID 𝑀 = 1)
67 dcne 2378 . . . . . 6 (DECID 𝑀 = 1 ↔ (𝑀 = 1 ∨ 𝑀 ≠ 1))
6866, 67sylib 122 . . . . 5 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))) → (𝑀 = 1 ∨ 𝑀 ≠ 1))
6938, 62, 68mpjaodan 799 . . . 4 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))) → 𝑀𝑆)
7069ex 115 . . 3 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) → 𝑀𝑆))
7170rexlimdvva 2622 . 2 (𝜑 → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) → 𝑀𝑆))
7222, 71mpd 13 1 (𝜑𝑀𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  {cab 2182  wne 2367  wral 2475  wrex 2476  cin 3156   class class class wbr 4033  cmpt 4094  ran crn 4664  cfv 5258  (class class class)co 5922  1c1 7880   + caddc 7882  cmin 8197   / cdiv 8699  cn 8990  2c2 9041  cz 9326  cuz 9601  ...cfz 10083   mod cmo 10414  cexp 10630  abscabs 11162  cdvds 11952   gcd cgcd 12120  ℤ[i]cgz 12538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121  df-prm 12276  df-gz 12539
This theorem is referenced by:  2sqlem10  15366
  Copyright terms: Public domain W3C validator